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REPRODUC~BI'UL'Lri: OF THE 
U1Zli;iic'Bi PAC2 IS POOR 

PREFACE 

Molecular physics is deemed here to include the physics of fundamental 
particles such as atoms and electrons as well as of more complex molecular 
structures formed from these basic building units. The subject is one of wide I 

utility and is rich in beauty. Its usefulness appears in every field of engi- 
neering and technology concerned with matter,that is, in every physical area 
of human endeavor. The conquest of space, the conservation of earth resources, * 
and the promotion of health and ecology are but a few examples of present 
social concerns that ultimately rest on an understanding of molecular science. 
To be sure, the direct application may often be more than one link in the 
chain removed from the basic science, but the linkage is nevertheless always 
there whenever one deals with matter in any form. The bulk properties of 
matter which the engineer uses to solve practicai problems are all appropriate 
averages of basic atomic and molecular properties. To deny the importance of 
this linkage is to deny the technology the roots from .*~hich it grows. Obvi- 
ously, any society that depends on its technology for leadership in the world 
community must promote a healthy competence in such fundamental science if it 
is to maintain this leadership. 

The beauty of molecular physics is less easy to define than its useful- 
ness, but it is urrmistakable. To the scientist the logical framework of the 
subject is impressive, to the artist and architect the variety of structure 
and form evoke admiration, and to the mathematician the elegance of the sym- 
metry relations involved holds exceptional appeal. To the mystic, the science 
of molecules i.s a pattern of creation in the physical universe suggesting sim- 
ilar patterns of creation on other planes of reality. Moreover, the atomic 
and molecular sciences are now reasonably mature and permit one to classify 
extensively and make broad generalizations. Philosopher Hans Reichenbach has 
said that generalization is the very essence of knowledge,so molecular theory 
partakes of this quality of all true knowledge. 

The present book is concerned only with the evalhation of equilibrium 
thermodynamic properties of gases and some applications to engineering prob- 
lems. This subject has been developed traditionally by the physical chemist, 
but the basic theory and experimental data are now so complete that the sub- 
ject logically should be taken up by the engineer to work out the detailed 
approximations needed for his applications. This book attempts to give the 
engineer a background for this task. 

To solve gasdynamic problems in general, the engineer also needs a well- 
developed science of transport processes, of chemical rate processes, and of 
radiation. The first of these is already a standard engineering subject and 
is well treated by recent engineering texts such as "Mathematical Theory of 
Transport Processes in Gases" by J. H. Ferziger and H. G. Ksper (North ! 

Holland-American Elsevier Publishing Co., 1972) and "Introduction to Physical 
Gasdynamics" by W. G. Vincenti and C. H. Kruger (John Wiley 6 Sons, Inc., 1965). 
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The other  two topics  (chemical r a t e  processes and rad ia t ion)  a r e  reasonably 
well developed from a p h y s i c i s t ' s  o r  physical chemist 's  point  of view, but a r e  
yet  i n  t h e i r  infancy so f a r  a s  engineering appl icat ions a r e  concerned. For 
example, the  theore t ica l  phys ic i s t  and chemist know the  form of t he  matrix 
elements f o r  perturbation-induced t r ans i t i ons  between s t a t e s ,  but t he  engineer 
o r  applied s c i e n t i s t  has been unable t o  ca lcu la te  simple r a t e  coe f f i c i en t s ,  o r  
even the  perturbat ion po ten t i a l s  between co l l id ing  p a r t i c l e s  t h a t  determine 
the  r a t e  c o e f f i r i e n t s ,  o r  simple f-numbers and rad ia t ion  band s trengths.  This 
occurs because the  wave functions f o r  multi-electron atoms and molecules can- 
not be calculated with su f f i c i en t  precis ion;  thus the  engineer i s  forced t o  
r e l y  on meager and sometimes uncertain experimental da ta ,  and shrewd extrapo- 
l a t i ons  of such da ta ,  t o  obtain the  react ion r a t e s  and band s trengths needed. 
However, t h i s  s i t ua t ion  is  rap id ly  changing. Fast ,  powerful d i g i t a l  computers 
a r e  emerging which w i l l  soon allow us t o  ca l cu la t e  s u f f i c i e n t l y  accurate  wave 
functions f o r  many purposes. The time i s  approaching when the  experimentalist  
w i l l  concentrate on highly accurate,  unambiguous measurements a t  a few se l ec t  
and carefu l ly  control led condition,, which can be used t o  va l ida t e  t he  theo- 
r e t i c a l  model programmed on the  computer, whereas i n  the  pas t  thc experi-  
menters have attempted t o  make measurements over as  wide a range of conditions 
as  possible  t o  provide the  engineering da t a  needed. Computer so lu t ions  w i l l  
s t i l l  make use of approxiinations because the  speed and memory s i z e  needed t o  
do so-cal led "exact" so lu t ions  a r e  s t i l l  about two orders  of  magnitude beyond 
present capabi l i ty  desp i te  the  tremendous recent advances i n  computer tech- 
nology. Thus, the  experimenter w i l l  r e t a i n  a key r o l e  i n  va l ida t ing  these  
programs, even though the  computer w i l l  be used Lc do extrapolat ions t o  condi- 
t i ons  of i n t e r e s t .  Such computer usage w i l l  open up the  f i e l d s  of reac t ion  
chemistry and r a d i a t i o ~  t o  f u l l  and p rac t i ca l  quant i ta t ive  appl icat ions by t h e  
engineers. Although t h i s  book does not include these subjec ts ,  the  present 
material  on equilibrium s t a t e s  and propert ies  of gases is  necessary background 
f o r  t he  engineer who w i l l  pursue and use nonequilibrium propert ies  of gases. 

Several addi t ional  books have been aimed a t  a s imi la r  audience of aero- 
dynamicists and engineers working on systems involving r e a l  gas behavior. 
Among these a r e  "The Dynamics of Real Gases" by J.  F. Clarke and M. McChesney 
(Butterworths, 1964), "Atomic Theory of Gas Dynamics" by J .  W .  Bond, K.  M. 
Watson, and J .  A.  Welch (Addison-Wesley, 1965), "Physics of Shock Waves and 
High Temperature Hydrodynamic Phenomena" by Y .  B .  Zelldovich and Y .  P. Raiser 
( t rans la ted  and edi ted by W .  D. Hayes and R.  F. Probstein,  Academic Press,  
1967), as well a s  t he  books by Vincenti and Kruger and by Ferziger ?nd Kaper 
which were c i t e d  above in  col?nection with the  t ransport  propert ies  of gases. 
In addi t ion,  "The Molecular 'i'heory of Gases and Liquids" by J. 0. Hirschfelder,  
C .  F. Cur t i ss  and R .  B .  Bird (John Wiley and Sons, 1954) has been widely used 
by engineers and bas ic  s c i e n t i s t s  a l i ke .  The present book puts l e s s  emphasis 
on gasdynamics than the  above t ex t s ,  but t r e a t s  the  molecular physics and 
s t ruc ture  aspects of  the problem in  grea te r  d e t a i l .  

Atomic and molecular physics have now become a pa r t  of graduate engineer- 
ing curriculum, in recognition of the  f a c t  t h a t  these subjects  a r e  included i n  
the background a research engineer needs t o  a t tack  h i s  problems. In t he  nor- 
mal course of evolution, the  basic  s c i e n t i s t  formulates and es tab l i shes  the  
fundanental concepts i n  a f i e l d  of science, and then tu to r s  the  engineer i n  
the appl icat ion of these concepts. As the f i e l d  matures and becomes 



reasonably self-consistent, the basic scientist turns to newer areas of 
science, and the engineering field gradually absorbs the established science 
into its own curriculum. 

In any case, the engineer is best served by ultimately assuming responi- 
bility for his own development of the intellectual tools of his profession. 
Approaches particularly suited to the engine~r's needs are often not well 
suited to the basic scientist's viewpoints and vice versa. For example, 
knowledge of atomic and molecular properties is an end in itself to the physi- 
cist, but to the engineer these properties may be just a collection of coeffi- 
cients needed to predict the behavior of a total system. It is the mark of a 
good scientist to refine his theoretical models, and their experimental con- 
firmation, until they are as detailed and precise as possible. It is the mark 
of a good engineer to use models just sufficiently detailed to achieve the 
accuracy required and no more. Thus, it behooves the engineer to approach 
atomic and molecular processes from this point of view. 

In the above spirit, this book deliberately emphasizes analytic models of 
the atomic processes, often to the point of considerable oversimplification, 
which convey at a glance the dominant functional behavior involved. To para- 
phrase an old Chinese proverb, "One analytic model is worth 10,000 hours on 
the computer." Such models help the engineer think effectively about the 
total system, and they yield the natural dimensionless parameters with which 
to analyze the problem. The engineer often finds that he can make comparisons 
with experiment and modify the constants that appear in very simple models to 
achieve the accuracy he needs. 

Whether simple or not, a mathematical relation cannot really be used 
wisely until its derivation has been followed in detail so that its limita- 
tions are appreciated. The problem here is that the research engineer is 
faced with such a swelling torrent of published results to digest in a wide 
variety of fields that he cannot possibly take time to fill in all the deriva- 
tions, which are necessarily abbreviated or deleted in the specialist's liter- 
ature, even though he may be perfectly capable of doing so. Thus, one of the 
purposes of this book is to present derivations in considerable detail so that 
the reader can follow them quickly, recognize the potentials and limitations 
inherent in the model, and then profitably use his time elsewhere. Although 
such derivations are given only for simplified models, they will often be 
sufficient to provide a good intuitive grasp of the more detailed models 
encountered in the literature. 

The reader is presumed to be acquainted with kinetic theory, thermo- 
dynamics, and elementary statistical mechanics and quantum mechanics, and to 
have a working knowledge of complex variables and the usual differential and 
integral calculus, all of which is standard for upper division or graduate 
engineers today. Concise derivations of some fundamental relations ic statis- 
tical and quantum mechanics are included (although these art? not needed by 
readers with the background specified above) because it is felt that engineers 
whose background in these subjects has lain unused for a time can then use the 
book more effectively. In addition, these short derivations are useful 
mnemonic aids that organize the essential relations, even for the advanced 



student ,  and t h e i r  presentat ion provides the  opportunity t o  c a l l  a t t en t ion  t o  
viewpoints pa r t i cu l a r ly  adapted t o  an engineering approach. 

Consistent with the purpose of  making the  derivat ions easy t o  follow, 
t he re  has been an attempt t o  avoid complicated notat ion,  involving a plethora 
of  superscr ip ts  and subscripts .  For example, vec tor  notat ion i s  used when it 
seems t o  contr ibute  t o  t he  understanding of the  r e l a t i o n s  discussed, but the  
vector  symbols a r e  merely dropped whenever the i ssue  concerns j u s t  t he  magni- 
tudes of  t h e  vectors ,  r a the r  than resor t ing  t o  the  r a the r  cumbersome absolute  
magnitude s igns about t he  vector  symbols. Such notat ions do help r e t a i n  gener- 
a l i t y ,  of course, but they a r e  inimical t o  rapid comprehension and e f f ec t ive  
thinking. On the other  hand, notat ion and dimensions a r e  chosen appropriate  
t o  the top ic  under discussion, ra ther  than fo r  consistency. The s p e c i a l i s t  
can afford the luxury of t r ea t ing  problems i n  a s ing le ,  consis tent  s e t  o f  
un i t s ,  but the engineer has no choice but t o  learn  t o  be a t  ease with any sys- 
tem of u n i t s  i f  he is t o  draw on the special ized knowledge i n  a va r i e ty  of 
f i e l d s  and bring i t  t o  bear on h i s  problems. Equations a r e  transformed t o  
dimensionless form, where appropriate,  because the e s sen t i a l  r e l a t i ons  can 
usual ly be more readi ly  recognized and brought i n t o  focus i n  t h i s  form. 

I  have of ten been privi leged t o  function a s  an in t e r f ace  between the  
bas ic  sciences and the  engineering approach t o  research problems. I have 
found t h i s  t o  be a s t imulat ing function, f o r  it forces  one t o  attempt t o  formu- 
l a t e  the  essence of  physical phenomena i n  a s  simple and d i r e c t  a way a s  possi- 
b l e ,  ye t  maintaining an awareness of the l imi ta t ions  i n  accuracy of t he  models 
used. The material  i n  t h i s  book i s  chosen pr imari ly  f o r  i t s  t u t o r i a l  o r  heu- 
r i s t i c  value, so i t  i s  i n  no sense a complete exposition of  the  myriad of  
approximate models of  atomic and molecular proper t ies  found useful f o r  engi- 
neering needs. The primary purpose i s  t o  provide the  engineer with those 
physical concepts about atoms and molecules which w i l l  enable him t o  d iges t  
research l i t e r a t u r e  more e f f i c i e n t l y .  Hopefully, he w i l l  then be in  a posi- 
t i o n  t o  bring himself up t o  da te  with current  archive l i t e r a t u r e  i n  those 
a reas  per taining t o  h i s  p a r t i c u l a r  needs. 

The material  contained in  the  book was f i r s t  presented i n  a s e r i e s  of 
l ec tu re s  t o  graduate s tudents  i n  Fluid Mechanics and i n  Aerodynamics a t  
Massachusetts I n s t i t u t e  of Technology (1965-66) as  a course e n t i t l e d  "Atomic 
and Molecular Kinetic Processes." I  am indebted t o  Professors R.  F. Probstein, 
J. A. Fay, and J.  C .  Keck f o r  the  opportunity of preparing and del iver ing 
those lec tures .  In subsequent years,  the  mater ial  has been expanded and 
updated as  a s e t  of notes f o r  t r a in ing  seminars attended by research engineers 
of the  Fluid Mechanics Branch, the  Magnetoplasmadynamics Branch, and the  Phys- 
i c a l  Gasdynamics and Lasers Branch a t  Ames Research Center of NASA. Recently, 
the  notes were again revised f o r  use as  l ec tu re  material  f o r  a graduate course 
i n  Aeronautics and Astronautics Engineering a t  Stanford University (1973-74) 
e n t i t l e d  "Molecular Physics of Gasdynamic Flow." I am indebted t o  Professor 
Daniel Bershader f o r  t h i s  opportunity t o  update the notes .  The s tudents  a t  
M.I.T. and Stanford, research engineers a t  NASA, and o ther  colleagues in  the  
aerospace industry have a l l  provided valuable suggestions about t h e i r  needs i n  
bas ic  physics of  gases, and t h i s  book attempts t o  address some of those needs. 



The labor  of  preparing t h i s  book would increase enormously i f  I were t o  
attempt t o  give f u l l  c r e d i t  t o  a l l  t he  sources and people who contributed i n  
one way o r  another. My grea tes t  debt is t o  Dr. Frederick Otto Koenig, 
recent ly  Emeritus Professor of  chemistry a t  Stanford University, f o r  t he  superb 
l ec tu re s  on s t a t i s t i c a l  and quantum mechanics he gave many years ago. I a l s o  
want t o  c r e d i t  B. E. Cunningham, NASA, f o r  h i s  help i n  preparing some of the  
mater ial  i n  chapter 19. Valuable c r i t i c i sm and ed i t i ng  was provided by my 
students  and by my colleagues a t  Ames Research Center - Drs. John R. Viegas, 
David M. Cooper, Robert L. McKenzie, and Kenneth K. Ygshikawa. Undoubtedly, 
some o f  my e r ro r s  remain; I hope these a r e  minor i n  number and degree. 

The references c i t e d  merely represent a few t h a t  have become c l a s s i c s  o r  
t h a t  I have found helpful ;  they do not i n  any way cons t i t u t e  a f u l l  bibl iog-  
raphy. However, t he  material  t r ea t ed  is  now reasonably s t ab i l i zed  and s e l f -  
consis tent ,  so t he  brevi ty  of' t he  bibliography should not se r ious ly  de t r ac t  
from t h e  t u t o r i a l  purpose of  t he  book. The aim is  not so much 1 0  make t h e  
mater ial  complete, a s  t h i z  would requi re  many addi t ional  volumes, but t o  
present an engineering approach t o  a subject  t h a t  has formerly been considered 
t o  be e n t i r e l y  i n  t h e  doma11-1 of  bas i c  physics and chemistry and t o  demonstrate 
some o f  t h e  advantages o f  such an approach. 

C .  FREDERICK HANSEN 
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CHAPTER 1 - THERMODYNAMICS AND STATISTICAL MECHANICS 

- 2  

1.1 SUMMARY 
4 . , 

The bas i c  thermodynamic proper t ies  of gases a r e  reviewed and t h e r e l a t i o n s  I 

between them a r e  derived from the  f i r s t  and second laws. The elements of  s t a -  2 

t is t ical  mechanics a r e  then formulated and the  p a r t i t i o n  function is deriv<.d.  
The c l a s s i c a l  form o f  t he  p a r t i t i o n  function is used t o  obtain t h s  Maxwell- 
Boltzmann d i s t r i bu t ion  of  k ine t i c  energies i n  the  gas phase and the  equipar t i -  
t i o n  of  energy theorem i s  given i n  i t s  most general form. The thermodynamic i: 
proper t ies  a r e  a l l  derived a s  functions of the  p a r t i t i o n  function. Quantum 
s t a t i s t i c s  a r e  reviewed b r i e f ly  and the  differences between the  Boltzmann d is -  f ; 

M b u t i o n  function f o r  c l a s s i ca l  p a r t i c l e s  and the  Fermi-Dirac and 1 
Bose-Einstein dis t r i .but ions f o r  quantum p a r t i c l e s  a r e  discussed. I *' 

! 
i 

1 . 2  INTRODUCTION i 

Propert ies  o f  atoms and molecules a r e  normally defined t o  be i n t r i n s i c  I 

for  the  gaseous s t a t e ,  t h a t  i s ,  they a r e  assumed t o  be proper t ies  only of  the  I '  

p a r t i c l e s  themselves and independent of the  s t a t e  of  the gas. Among such 
proper t ies  a r e  t h e  quantum numbers of t he  p a r t i c l e ,  co l l i s ion  cross  sec t ions  
f o r  s ca t t e r ing  o r  i n t e rna l  energy exc i ta t ion ,  dipole  moment, e t c .  S t r i c t l y  
speaking, t h i s  assumption i s  va l id  only f o r  t he  d i l u t e  gases; i f  t he  dens i ty  
of  t he  gns becomes la rge ,  the atomic and molecular propert ies  a r e  a l l  affected 
by per t~srba t ions  from neighboring p a r t i c l e s .  For example, t he  perturbed quan- 
 tun^ s t a t e  can be described a s  a l i n c a r  combination of  unperturbed quantum i 

s 
s t a t e s ,  and a l l  o ther  proper t ies  of the  p a r t i c l e  a r e  affected accordingly. I 
Nevertheless, a very useful model of the  gaseous s t a t e  i s  one i n  which t h e  
bulk proper t ies  of t he  gas a r e  taken t o  be i n t r i n s i c  molecular propert ies  
averaged over t he  d i s t r i b u t i o n  of p a r t i c l e s  i n  the  various unperturbed quantum 
s t a t e s .  The e f f e c t s  of  high densi ty  and pressure a r e  then analyzed as  small 
per turbat ions t o  t h i s  model. 

The engineer is, of  course, ul t imately in te res ted  i n  the bulk proper t ies  a 
of t he  gas, which may be c l a s s i f i ed  a s  e i t h e r  intensive o r  extensive. An 

-d + .' 
in tens ive  property i s  a function of  pos i t ion  and does not depend on the  spe- 
c i f i c  amount of gas considered, whereas an extensive property represents  an 
average per  u n i t  quant i ty  of gas which i s  t o  be mult ipl ied by the  t o t a l  

g. quant i ty  of gas t o  obtain the  t o t a l  value of the property f o r  the  system. The , 
JY;. t h r ee  most commonly used intensive propert ies  a r e  temperature, T; pressure,  p ;  i r 6 and densi ty ,  p .  

For the  extensive propert ies ,  the cap i t a l  l e t t e r  notat ion is t r ad i t i on -  i 

a l l y  taken t o  represent the  average value per mol of gas  ( i . e . ,  per Avagadro 



number - 6 . 0 2 5 ~ 1 0 ~ ~  - of mulecules) whereas lower case letters are used to 
represent the value per ui:it mass. For example, the extenaive properties per 
mol of interest here are 

M molecular weight per mol 

M V or - 
P 

volume per mol 

E energy per mole 

B or E+pV enthalpy per mol 

S entropy per mol 

C, or (g)v specific heat per mol st constant volume or Zmnsiity 

specific heat per mol at constant pressure 

li. 
5 
f F or E-TS free energy per mol or Helmholtz free energy 
F. 
9 

! G or H - T S  free enthalpy per mol or Gibbs free energy p 
(Note that A is sometimes used for the Helmholtz free energy, and F for 

4 - k the Gibbs free energy.) i 
t. 
8, Fluid dynamicists are usually iraterested in average properties per unit 

%. 
mass rather than per mol because, in these units, the thermodynamic quantities 

z relate most directly to the flow velocity. For example, the sum of the 
enthalpy per unit mass and the kinetic energy per unit mass is a constant of 
steady adiabatic inviscid fluid flow. The most commonly used bulk properties 
per unit mass are: 

i e = E / M  energy per unit mass 

h = H / M  enthalpy per unit mass 

ot, = c v / M  constant volume specific heat per unit mass 

sp = C P / M  constant pressure specjfic heat per unit mass 

1.3 REVIEW OF THERMODYNAMIC RELATIONS 
i 

A brief review of some of t1le relations that exist between the thermo- 
dynamic quantities will be helpful (refs. 1-3). These may be deri~~e~! rrom the 

- ,  
first and second laws of thermodynamics, stated here in diffcren?,al form. 
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First Law of Thermodynamics (Consexvat ion of Energy) 

Every system has an energy E such t h a t ,  f o r  any change i n  which the  
t o t a l  number of pa r t i c l e s  is conserlred, 

dE = dq + cad 

where dq is  defined as  the  heat absorbed by the  system and & a s  the  work 
done on the  system. The latter is a purely mechanical quantity, force times 
distance, which f o r  a gas phase system is normally jus t  

& = - p a  (1 2) ?; f i  F ? *  > 

Note tha t  & vanishes f o r  a constant volume process. i 

i 2. 
$ 
4 Second Law of Thermodynamics (Law of Entropy) 

Every system has an entropy S and an absolute temperature T such 
tha t ,  f o r  any change i n  which the t o t a l  quantity of  matter i s  conserved, 

The equality sign gives the  lower bound on the  change of entropy which obtains 
when the  process is completely reversible. 

Consider the  heat f lux from a system a t  temperature Tn t o  a system a t  
temperature TI where T2 > TI > 0. The t o t a l  change i n  entropy of the  two 
systems is  always positive: 

The flow of heat from a hot ter  t o  a cooler system is  a spontaneous, i rrevers-  
i b l e  process, and the  inequality signs i n  equations (1.3) and (1.4) hold fo r  
such cases. However, in  principle, an experiment can be imagined in  which 
the  temperature difference is so minute tha t  the process is  almost reversible. 
The equality sign i n  equation (1.4) then gives the  lower bound on the entropy 
increase. A t  equilibrium, the  processes tha t  occur i n  a system become com- 
ple te ly  reversible by defini t ion,  temperature differences must be zero, and 
the entropy becomes a maximum subject t o  the  constraints  imposed on the system. 

The above resu l t  fo r  two systems can be generalized t o  include an arbi -  
t r a ry  number of systems, indeed the e n t i r e  universe, and fo r  processes other 
than heat flux, such as  mass flux, pressure change, energy change, work, e t c .  
The t o t a l  change i n  entropy for  any rea l  process is always greater  than zero. 

For convenience in  the  derivations t o  follow, a closed system is  defined 
as one tha t  allows neither mass addition nor subtraction, but does allow 
energy or  heat f lux t o  and from the system. Conversely, an open system (a 
concept discussed in the chapter on Chemical Equilibrium) allows mass addition 



, / The equality holds if the processes are all reversible, that is, if changes 
4 1 
.f . are made so slowly that the system always maintains equilibrium. In reality, 
L 

a system must be driven out of equilibrium to make a process occur and change 
i 

the state of the system starting from equilibrium. However, in principle, the 
f amount of nonequilibrium can be kept so small that the equality is an extremely 
\ .  good approximation for the process. The equality also holds if the beginning 

and end states are in complete equilibrium, whether or not the process is , 
. * 

+ reversible, since the equilibrium conditions are state functions and do not 
& 
F depend on the process. 

I 
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or subtraction also. For the present, we consider relations between the 

i~ practical terms, we speed up desired processes with interactions 
between the system of interest and the surroundings external to that system. 
Consider the special case where the processes change the state of the system 
from one equilibrium state to another. This situation is illustrated in 

figure 1.1 which describes two paths a process 

:- - 
m ,  i 
'I.. ; 

properties of a closed gas phase system. For such a system, it follows from 
.,,-. equations (1. l), (1.2), and (1.3) that 
,' , / 

,, 

-i S 

2 
S 
$ z 
W x 
t 

may take in going from equilibrium state A to 
equilibrium state B. Let the ordinates repre- 

, ~ ( x 2 ,  y2) sent any two independent thermodynamic variables 

/' 
(such as pressure and temperature, or volume and 

/ temperature, or volume and entropy, etc.'. Any 
# two such variables uniquely determine the equi- 

/ librium state and thus all other variables. By 
AM,,  YI) definition, the system at A will remain at that 

state indefinitely unless a small amount of non- 
THERMODYNAMIC VARIABLE x equilibrium is introduced from an external sys- 

tem - for example, the nonequilibrium introduced 
Figure 1.1.- Process paths by forcing a gradual change of volume, or by 

from equilibrium state A slowly letting heat in or out of the system. In 
to equilibrium state B. principle, the nonequilibrium could be produced 

by a slow change in any other variable,'or a com- 
bination of variables, caused by interaction with an external system. For a 
change in volume, mechanical work must be done on the system or by the system 
to move the gas boundaries against or with the gas pressure, respectively. If 
this change in variable sere applied infinitely slowly, the system would trace 
a path from A to B given by the solid curve for which every point on the 
curve is essentially a state in equilibrium and for which the process would 
stop immediately as soon as the interaction with the external system were 
terminated. For this path, the process is reversible and the equality of 
equation (1.5) would apply. Since this process would take infinitely long, as 
a practical matter the process would be speeded up by forcing it to follow an 
irree~ersible nonequilibrium path, say from A to A'. At A' the inequality 
of equation (1.5) would hold. Then, if the forcing function from the external 
source were removed, the system could change spontaneously from the nonequi- 
librium state A t  to an equilibrium state B ' ,  at which point the cha.~ge in 
the system would stop and the equality of equation (1.5) would hold so far as 
the internal system is concerned (i.e., not including changes in the external 



system). S t a t e  B 1  might not be exact ly the  same a s  s t a t e  B i f  t he  forcing 
function from the  external  system were not terminated a t  t he  appropriate  point  
for  spontaneous in te rna l  processes t o  lead t o  B; however, B' w i l l  l i e  some- 
where on the  equilibrium l i n e  containing AB ( f i g .  1 .1) .  The surface formed 
by a l l  such l i nes  i n  a t h i r d  dimension, which represents  nnother thermodynamic 
var iab le  z, is ca l led  the  squiZibriwn surface. The system could be forced 
back t o  s t a t e  B by a fu r the r  i r r eve r s ib l e  path i f  t he  appropriate i n t e r -  
ac t ion  with an external  system i s  used. For any i r r e v e r s i b l e  path AA'B, t he  
t o t a l  entropy change o f  t he  in t e rna l  and external  systems w i l l  be grea te r  than 
zero. Often the  engineer is in te res ted  only i n  the  balances t h a t  per ta in  t o  
t he  in te rna l  system, which a r e  uniquely determined by the  s t a r t i n g  and end 
points  A and B. In o ther  words, t he  in t e rna l  system balance w i l l  be t he  same 
a s  though the  path had been t h e  revers ib le  path, i n  which case, equation (1.5) 
may be used with the  equal i ty  sign. However, note t h a t  somewhere external  t o  
t he  system i n  which a change of  s t a t e  has taken place, t he re  have been changes 
which when coupled with the  changes in  the system, increase the  t o t a l  entropy 
of  the  system and i ts  surroundings; otherwise t h e  process would not have 
occurred i n  f i n i t e  time. 

Conservation theorems f o r  nonequilibrium o r  i r r e v e r s i b l e  processes i n  
closed systems can a l s o  be deduced from re l a t ions  such a s  equation (1.5) . 
Consider a system kept a t  f ixed spec i f i c  volume V and entropy S. These two 
independent var iables  uniquely determine the  equilibrium s t a t e  of  the  system 
and therefore a l l  remaining thermodynamic variables  a t  equilibrium, such a s  
E ,  p, T, e tc .  Now i f  the  in te rna l  system undergoes an i r r e v e r s i b l e  process by 
in t e rac t ing  with an external  system and is then returned t o  i t s  o r ig ina l  equi- 
l ibrium s t a t e ,  while V and S a r e  maintained constant throughout, the i n t e -  
g ra l  o f  a l l  changes dE must sum t o  zero. This can occur only i f  dE 
vanishes over each in t e rva l  of  the cycle. Thus in te rna l  energy is  a con- 
served quant i ty  i n  any in te rna l  process where V and S a r e  fixed; i n  contrast ,  
the  quan t i t i e s  pressure o r  temperature might vary during t h i s  pa r t i cu l a r  proc- 
e s s  and then re turn  t o  t h e i r  i n i t i a l  value. Similar ly,  V would be conserved 
i n  nonequilibrium processes t h a t  occur a t  fixed E and S; S would be 
conserved a t  fixed E and V .  

The same r e l a t ion  given by equation (1.5) i s  conveniently expressed i n  
terms of  o ther  thermodynaaic quan t i t i e s .  Subs t i tu t ing  the de f in i t i on  of 
enthalpy (H = E + plr) i n t o  equation (1 .5) ,  again f o r  a closed system, one 
obtains  

d H - V d p - T & I O  (1 -6)  

Thus enthalpy i s  a conserved quant i ty  f o r  systems kept a t  constant pressure 
and constant entropy. Similar ly,  i f  the  f r e e  energy (F = G - TS) i s  subs t i -  
tu ted  i n t o  equation (1.5),  

o r  the  f r ee  enthalpy (G = H - TS) i n t o  equation (1.6) ,  



Thus, F is a conserved quantity for closed systems constrained to fixed V and 
T, and becomes a minimum for these systems at equilibrium. Similarly, G is a 
conserved quantity for closed systems constrained to fixed p and T and 
becomes a minimum for these systems at equilibrium. In the laboratory, it is 
more convenient to keep temperature, pressure, and volume constant than 
entropy or energy, so the f;ee energies are particularly useful for describing 
the equilibrium state in the usual experimental situation. 

The thermodynamicist thinks of entropy in relation to the amount of work 
that can he abstracted from a system by reversible processes at constant tem- 
perature. From equation (1.7), this amount of work is just the decrease is 
free energy: 

Thus, free energy F represents that part of the energy E available for 
work at isothermal, equilibrium conditions, while the quantity TS represents 
that part of E not available. Similarly, the decrease in Gibbst free energy 
is the work abstracted from this system plus the decrease in the quantity pV: 

The product pV represents the work done by 1 mol of ideal gas expanding at 
constant pressure from infinite density to volume V .  This product is also 
sometimes referred to as flow work by fluid dynamicists (ref. 4). 

Relations between thermodynamic variables at equilibrium and their 
partial derivatives are readily derived from equations (1.5) through (1.8). 
For example, in a closed system the pressure, volume, temperature, and entropy 
are, respectively 

(Some of these relations are useful for the purpose of relating thermodynamic 
quantities to statistical mechanics.) 

I 
When the thermodynamic relations are known, one can, in principle, solve 

any fluid problem in which transport phenomena can be neglected [ref. 5) (i.e., 
where the effects of viscosity, conduction, diffusion, and radiation are all 



small) .  On: needs t o  solve simultaneously, subject  t o  t h e  appropriate  
boundary conditions,  equations o f  conservation of  energy, momentum, and mass, 
and t h e  equation of s t a t e ,  shown below i n  s implif ied one-dimensional, steady- 
s t a t e  form: 

s where u s the  f l u i d  veloci ty .  Sllch solut ions may be very d i f f i c u l t  i n  

i g4 

g e ~ ~ e r a l ,  aild t h e  f l u i d  dynamicist 's task is  t o  f ind  p a r t i c u l a r  o r  approximate 
>. s o l u v i o n s  t;o spec i f i c  problems of i n t e r e s t .  That small p a r t  of t he  problem 
&- 
.i" with which t h i s  book i s  concerned i s  t o  express t he  thermodynamic quan t i t i e s  
.3 5.. . ., as  furlctions of the  appropriate var iables  so t h a t  such so lu t ions  a r e  possible ,  

a - ,  i n  principn e a t  l e a s t .  
2:. -. 
, . 
%?.. 
> , a  .~*. 
Y? I f  the  gas is i n  equilibrium, the  case considered f o r  t he  present ,  any 2 ..< two thermodynamic var iab les  determine the  complete s t a t e  of  t he  gas. A s  a 
y" general ru l e ,  solut ions a r e  simpler and mathematical expansions converge more 
II '. rapidly i f  independent var iab les  can be chosen t h a t  a r e  r e l a t i v e l y  constant 
I,. . >. ' 
iy 

f o r  t he  problem a t  hand. Thus, p and T a r e  normally chosen i f  the process i n  
questioii tends t o  occur a t  constant pressure,  while p and T a r e  convenient 
fo r  pro; lems where densi ty  is  r e l a t i v e l y  constant,  and S and T a r e  appropri- 
a t e  f o r  cor~st,ant entropy processes. However, any o ther  combination of two 
variables  can be used If approximate thermodynamic r e l a t i ons  can be devised 
which a r e  s iny le  enough ana ly t i ca l ly  so  t h a t  they can he inverted, t he  engi- 
neer gains f l e x i b i l i t y  i n  t he  choice of  independent var iab les .  

1.4 PH'rSICAL CHEMICAL METHODS FOR OBTAINING THERMODYNAMIC QUANTITIES 

Original ly ,  therr.mod;-r~amic quan t i t i e s  were determined by the  physical 
chemist, who developed ,~isans of measuring p ,  V, T, and a l so  Aq, t he  heat 
added t o  a closed :,\.;tern. The spec i f i c  hea ts  could then be determined 
experimentally: 

i f  mea.  2emer:ts were made i n  a constant volume device, or  



if in a constant pressure device. Then, in the constant volume experiment, 
the energy and entropy could be derived by the simple numerical integrations: 

or, in the constant pressure experiment, enthalpy and entropy are obtained: I a' 

The other thermodynamic functions are all related, by definition, to the above 
quantities. The constants of integration in equations (1.13) and (1.19) remain 
undetermined; thus, energy, ent halpy , entropy, and the free energies were a1 1 
related to some arbitrary reference level (taken to be zero for a pure stable 
gas at standard temperature and pressure, usually p = 1 atm and T = 273" K ,  
though both 288" K and 293' K are also often used as standard reference tempera- 
tures). This was sufficient for many purposes where only differences such 
as AE, AS, or AF are needed to solve the problems of interest. However, Aq 
is difficult to measure accurately because of heat losses, truly constant 
pressure or constant volume processes are hard to maintain, and, in any case, 
there are practical limits to the range of T and p available to the experi- 
menter. Thus, a more pi.ecise method of determining the thermodynamic proper- 
ties based on measured atomic and molecular constants is now used. 

According to the results of statistical mechanics, all thermodynamic 
properties of dilute gases can be determined from the energies ~i and the 
degeneracies gi of the unperturbed atomic or molecular states of the gas 
particles. Fortunately, these energy levels are known very accurately from 
spectrographic measurements in many cases of interest, and the degeneracies 
are generally known as a result of quantum mechanical interpretation and clas- 
sification of spectra. The fruition of these basic disciplines now permits 
thermodynamic properties to be evaluated so precisely that other methods are 
not normally competitive. 

1.5 REVIEW OF BASIC STATISTICAL MECHANICS 

Statistical mechanics is based on the following postulate: 

Basic Postulate of Statistical Mechanics 

Spontaneous processes of a closed s)*stem always lead to a more probable 
state of the system as a whole. The qualifj-cation "as a wholef1 is included 



because, if a small part of the system is isolated, statistical fluctuations 
can occur, leading to a transient, less probable state for that part of the 
system. Such transient fluctuations lead to real phenomena such as Brownian 
motion and scattering of light from the Earth's atmosphere, for example. How- 
ever, in a practical sense, the postulate is found to agree with reality for 
any system with dimensions large compared with the mean free path between 
molecular collisions or where the state properties are averages over times 
long compared with the mean collision time. This time irreversibility of 
spontaneous processes in closed systems is deduced in a sense from the 
Boltzmann H-theorem (ref. 6), which might be considered a proof of the above 
postulate. llowever, the result of the Boltzmann H-theorem is really intro- 
duced by the assumption made that the molecules entering collision are uncorre- 
lated by past history (ref. 6); this assumptiori a~ltsnstically introduces a dis- 
tinction between past and future into the kinetic gas model. For purposes of 
this book, it seems appropriate to merely state the postulate as one that 
agrees with observed behavior of systems rather than attempt to prove the 
postulate from more fundamental principles. According to the above postulate, 
an equilibrium system resides in its most probable state. This maximum proba- 
bility is subject to the constraints imposed on the system, such as the total 
volume, the pressure, the number of molecules, or the energy, etc. 

A quantity W, called the thermodynamic probability, is defined as the 
number of equivalent ways the fundamental particles of the system can be dis- 
tributed in the different states available to these particles. The quantity 
W is not really a probability since it is not normalized to unity, but it is 
proportional to the probability so that, at equilibrium, W is a maximum. In 
probability theory, W is called the number of permutations. One can see that 
W has properties similar to the entropy S, which also tends to increase as a 
result of spontaneous processes and become maximum at equilibrium. However, 
the second law of thermodynamics defines entropy as an extensive property so 
that the total entropy of several systems is the sum of the individual 
entropies 

whereas the total thermodynamic probability is the product of the individual 
thermodynamic probabilities, 

Consequently, S must be proportional to the logarithm of W: 

Note that if some constant different from zero is added to equation (1.22a), a 
different constant then appears in the summation given by equation (1.20) and 
in equation (1.22b). Consequently, the constant must be zero to maintain an 
invariant functional relation between S and W. This fact establishes the 
absolute level of entropy. 



Equation (1.22) constitutes a fundamental definition called the Boltzmann 
definition of entropy. In fact, the dimensionless quantity W could be used 
in place of entropy. However, the latter was defined and measured empirically 
long before the statistical relations were understood, so the precedent is now 
well established that the dimensional quantity S is used to describe the 
direction of spontaneous change in thermodynamic systems. Where the loga- 
rithms are taken to the base e ,  the proportionality constant between S and 
Zn W must be the Boltzrnann constant k to match the statistical and 
thermodynamic definitions of entropy. 

The thermodynamic probability W is a measure of the uncertainty about 
the system. If the state of the system were precisely known, W would be 
unity and the entropy would be zero. This situation exists at absolute zero 
temperature for many systems. If an uncertainty exists whether the system is 
in any one of W equally probable states, the entropy is k Zn W. The larger 
the uncertainty in the state of the system, the larger W and the entropy 
become. 

Strictly speaking, W should zpresent the total number of states 
available to the system. However, it will be more convenient to use W to 
represent a more limited quantity, namely, the total number of states of a 
system constrained to have a given set of occupation numbers ni for the 
particles that occupy each available state i. In other words, the uncer- 
tainty in this hypothetical system arises from the exchange of like particles 
between states, but the distribution function for the values of ni remains 
fixed. This model is dseful because it allows one to define the entropy of 
both equilibrium and nonequilibrium systems and, for most practical purposes, 
it yields the same result as if the distribution function for the occupation 
numbers ni were allowed to fluctuate. Real systems are in a dynamic state 
of fluctuation, of course, because of collisions and photon transitions, for 
example. Thus, in real systems, the occupation numbers ni fluctuate about 
some mean value. Only the energy and the total particle number n are con- 
served for a system isolated from its surroundings, and the fluctuations in 
the occupation numbers means that a manifold of additional and equally prob- 
able states are available to the system, increasing the uncertainty about the 
system and therefore the entropy of the system. For this reason, many authors 
(refs. 7-9) prefer to define a quantity R as the total number of states 
available to the system with a given energy, to distinguish it from the quan- 
tity W representing the thermodynamic probabilities for systems constrained 
to single sets of occupation numbers ni. Thus, 

where the summation extends over all sets of occupation numbers which result 
in the given total energy. The equilibrium system is that one for which all 

b are equally probable, and the entropy of the equilibrium system becomes 



Gibbs developed the concept of the ensemble to deal with problems 
associated with fluctuating occupation numbers. The ensemble represents a 
hypothetical distribution of equal energy systems, each of which can be 
described as a point in 6n-dimensional phase space (three position coordinates 
and three momenta for each of the n particles in the system). As the parti- 
cles of the system move about in physical space, the location of the system 
moves in phase space. The density of these system points obeys the same set 

I of Liouville equations that determine the flow of a nonviscous fluid (refs. 10 
and 11). The density of systems in the volume element about a point in phase 
space is proportional to the fraction of time that a real system will be found 
in that particular configuration with its particular set of occupation numbers 

A canonical ensemble is that particular ensemble that is steady state in 
time. The thermodynamic probability is the total number of different con- 
figurations found in the canonical ensemblz and is a constant. The quantity 
W is the number of member systems of the ensemble which have the same aistri- 
bution function for the occup~.:ion numbers; it may be considered a fluctuating 
quantity ,fiat represents the thermodynamic probability of a system at a given 
instant of time. 

The canonical ensemble is sometimes also called the microcanonical 
ensemble to distinguish it from the grand canonical ensemble, another concept 

? 
*.. introduced by Gibbs. The grand canonical ensemble is an ensemble of equal 

1 *< 

it energy systems with all possible total numbers n allowed (whereas n is a 
% fixed quantity in the closed systems considered so far). This ensemble is 

& useful for treating the open systems considered in respect to chemical equi- 
librium in chapter 2. Although the ensemble concepts have proven very useful 
in deriving certain average properties of real systems (ref. 12), with the 
advantage of hindsight we can now derive the properties of interest without 

&. *. 

E. these concepts, focusing attention on a single system and using the fact that 
F' 
f ,  

$2 can be approximated quite well by the maximum possible value of W, that is, 
8: wmax 
9 *, 
f' B For quantitative applications, the entropy is expressed as 
&' 

The first term, k Zn Wmm, which can be calculated with reasonable accuracy, 
represents the entropy of a system constrained to the most probable distribu- 
tion of occupation numbers. The second term, k Zn(n/Wmm), can be approxi- 
mated only roughly. However, in section 1.12, we find that this term is the 
same order of magnitude as terms that are neglected in evaluating k Zn W,,,, 
and it represents the increase in entropy required to account for fluctuations 
about the most probable state. For most systems of practical interest, the 
number of particles is very large (typically the order of 1019) and, in this 
case, the correction is truly negligible. rhysically,this means that in sys- 
tems having large numbers of particles, the fluctuations about the mean dis- 
tributioh~ are percentagewise very small! 

$, , The advantage gained by use of equation (1.22b) as the basic definition 
%' , 
&; of entropy, with W defined as a variable representing the thermodynamic 
6: 
%A 

probability of a fictitious system constrained to a single distribution 
43 
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function, is that the definition can then be applied to both the equilibrium 
- i and nonequilibrium cases whenever the distribution function for the occupation 

I numbers ni is known or approximately known. (Again note that Cl is a con- 
stant and equation (1.22~) cari be applied only to the equilibrium conditions.) 

i This is useful, for example, when small sample systems are examined in which 

i : 
the entropy, as well as cther thermodynamic quantities, may have sizeable 

I 
fluctuations of interest. Again, the entropy can be assigned to a highly non- 
equilibrium system at each instant of time if the rate of change of the popu- 
lation numbers, Gi, is known starting from some initial condition. In both 
the equilibrium and nonequilibrium cases, there will exist a fluctuation in 
occupation numbers in real systems which will require an added term in the 
expression for entropy; but in most practical situations, the correction will 
be negligible. Usually, only changes in entropy are needed, and the rela- 
tively constant correction term is superfluous in this case. 

At this point, it may be helpful to include a c comments about the 
difference between classical and quantum particles since some confusion exists 
about these differences in both the literature and the classroom. Classical 
particles are considered to be completely distinguishable from one another by 
virtue of their position in space and time. Thus, for a system of n classi- 
cal particles, there exist n! different configurations of the particles that 
can lead to the same observable state of the system, namely, the configura- 
tions that arise from the n! different exchanges of two like particles. The 
n particles in a solid-state crystal lattice intuitively seem to satisfy the 
requirements of distinguishability and, indeed, the solid-state crystal can be 1 
modeled very well by use of the classical particle ccncept. In gases, the 
distinguishability of the particles seems less obvious. The particles are 
free to move about and exchange position, but, in principle, according to 
c1;lssical mechanics the positions and momenta of all particles of the system 
are known at any future time if the initial conditions are given. In this ; ! 

sense, the classical particles are distinguishable even though the labor 
involved in keeping track of the huge nurnber of particles involved in normal 
systems would be prohibitive, even for modern computers. However, Gibbs and 
other early thermodynamicists found that when all n! states of s ~ c h  a gas 
were considered distinguishable, the entropy obtained statistically was too 
large. A nonvanishing zero level entropy was derived which led to the famous 
Gibbs paradox: the total entropy of suck a system did not equal the sum of 
the entropies of its parts, as required of an extensive property (see t 

eqs. (1.20) and (1.22)). The answer to this paradox was forthcoming only when 
quantum theory was developed. Strictly speaking, all particles obey quantum c 

mechanics; classical behavior is merely a limiting behavior that is approached 
% ':J in certain cases, as for the highly localized particles in the solid, but it 

is not approached in others, as for the free particles in gases. 

Irr quantum mechanics, the probability that a particle i will be found 
in a volume element of space, &i dgi dzi, is given by the product of the 
volums element and the square of the particle's wave function 

2 Jli (xi,yi,~i)d7Ci d.yi Jz; (re{. 13). These wave functions are discussed in 
detail in chapter 3 a t ~ d  thereafter; for the present, it is sufficient to point 
out that if a system of n identical particles exists in which the particles 
are isolated (as in a solid), the individual particle wave functions do not 



over lap  and t h e  p a r t i c l e s  can then be t r e a t e d  a s  d i s t i n g u i s h a b l e .  I f ,  on t h e  
o t h e r  hand, t h e  p a r t i c l e s  a r e  f r e e  t o  occupy t h e  same region o f  space ( a s  i n  a  
g a s ) ,  t h e  ind iv idua l  p a r t i c l e  wave func t ions  a l l  over lap  one another  and t h e  
p a r t i c l e s  must then  be t r e a t e d  a s  i n d i s t i n g u i s h a b l e .  Then t h e  n! exchanges 
o f  p a r t i c l e s  must be  considered t o  r e s u l t  i n  t h e  same i d e n t i c a l  s t a t e .  Mathe- 
ma t ica l ly ,  t h i s  s i t u a t i o n  i s  modeled by express ing  t h e  wave func t ion  f o r  t h e  
e n t i r e  system o f  isolated ( d i s t i n g u i s h a b l e )  p a r t i c l e s  a s  t h e  product o f  a l l  
o n e - p a r t i c l e  wave func t ions  ( s e e  s e c t i o n  4.7) : 

n 
N 

$(q1,q2, .  . 0 . 4 ~ )  = 1 1  qt(qi) (1.24) 
i= 1 

There a r e  I !  d i f f e r e n t  wave funct ions  of t h i s  type ,  corresponding t o  a l l  
p o s s i b l e  exchanges o f  t h e  coord ina tes  o f  two l i k e  p a r t i c l e s .  (Note t h a t  qi 
r e p r e s e n t s  t h r e e  coord ina tes  i n  phys ica l  space ,  and t h a t  t h e  system wave 
func t ion  is  a  func t ion  o f  a l l  3n space coord ina tes . )  On t h e  o t h e r  hand, t h e  
wave funct ion f o r  a  system o f  ( i n d i s t i n g u i s h a b l a )  p a r t i c l e s  with overZapping 
wave func t ions  must be  expressed a s  a determinant (again  s e e  s e c t i o n  4 .7) :  

which a l ready  accounts f o r  a l l  p o s s i b l e  in terchanges  of  two l i k e  p a r t i c l e s .  
The po in t  i s  t h a t  t h i s  func t ion  r e p r e s e n t s  a  s i n g l e  s t a t e  o f  t h e  system, not  
n! s t a t e s .  Molecules i n  a  gas behave a s  f r e e  p a r t i c l e s  and, a s  shown i n  
chap te r  3 ,  f r e e - p a r t i c l e  wave func t ions  extend throughout t h e  e n t i r e  a v a i l a b l e  
volume. Thus, t h e  gas p a r t i c i e  wave func t ions  a r e  a l l  over lapping and t h e  
t o t a l  wave func t ion  f o r  a  gaseous system o f  p a r t i c l e s  must b e  represen ted  by a  
func t ion  o f  t h e  form o f  equat ion (1.25).  The s o l i d ,  on t h e  o t h e r  hand, can be 
adequate ly  modelled by n! d i f f e r e n t  func t ions  o f  t h e  form of  equat ion (1.24). 
In a  l i q u i d ,  t h e  p a r t i c l e s  a r e  n e i t h e r  s t r i c t l y  l o c a l i z e d  n o r  f r e e ;  t h i s  s i t u -  
a t i o n  i s  more d i f f i c u l t  t o  model than t h e  l i m i t i n g  cases  t h a t  r ep resen t  t h e  
s o l i d  and gaseous s t a t e s ,  but  t h e  wave func t ion  w i l l  obviously have t h e  char-  
a c t e r  o f  a  product o f  lower rank determinants  t h a t  r e p r e s e n t  t h e  wave func- 
t i o n s  o f  small c l u s t e r s  o f  n e a r l y  i n d i s t i n g u i s h a b l e  p a r t i c l e s .  The number o f  
d i f f e r e n t  s t a t e s  o f  a l i q u i d  system provided by in terchanging t h e s e  c l u s t e r  
groups i s  much g r e a t e r  than u n i t y  but  smal le r  than n!. S i m i l a r  considera-  
t i o n s  a r e  necessary  when one c o r r e c t s  t h e  i d e a l i z e d  gas model t o  account f o r  
h igh-densi ty  e f f e c t s  t h a t  lead t o  slow d i f f u s i o n  of  gas p a r t i c l e s  and,  i n  
e f f e c t ,  some l o c a l i z a t i o n  o f  t h e  p a r t i c l e s .  Again, a t  high temperatures ,  t h e  
d i f f u s i o n  e f f e c t  i n  s o l i d s  leads  t o  some over lapping of  s i n g l e - p a r t i c l e  wave 
funct ions  and some i n d i s t i n g u i s h a b i l i t y  of  t h e  p a r t i c l e s .  



1.6 SOLID-PHASE STATISTICS 

The gas phase.is of primary concern here, but it will nevertheless be 
instructive to consider first a system of n localized and therefore diat in-  
guishable particles (as in the solid phase). Subsequently, in the gas phase 
system considered, the particles are all free t c  occupy the to ta l  voZwne and 
are therefore indistingui8hable. By this procedure, certain important 
differences between these two cases can be noted. 

The nu-5er of ways n clistinguishable particles can be chosen to occupy 
the availab; states k, with a given set of occupation numbers nk, is the 
thermodynamic probability 

(Derivations of the mathematical expressions used for W are presented in 
references 10, 11, and 14 among others; appendix 1-A presents a brief review 
of these derivations.) 

Systems of interest often have r. number of states with the same energy 
level c i ,  and the number of such states is called the degeneracy of that 
level gi. In this case, it is convenient to express the distribution func- 
tion in terms of the numbers of particles ni that occupy each level i. The 
thermodynamic probability for the solid phase system is then expressible as 

If Stirling's approximation for the logarithm of factorials of large numbers 
(refs. 10, 11, and 15) 

is used with equation (1.27), an approximate expression for In W is 

Not all the numbers ni are so large that Stirling's approximation is 
justified. However, the tota! number of particles in the system may be taken 
so large that the approximation is fully justified for all cells that contrib- 
ute app-eciably to the total ther~odynamic probability W. In fact, if only 
terms of orders n and ni are retained: 



The neglected terms are self-compensating for the small occupation numbers so 
the results are the same as those given by the more rigorous derivation of 
Darwin and Fowler using the method of steepest descent (refs. 16 and 17). 

The values of ni are subject to the restriction that the total number 
of particles be fixed: 

and that the total energy be some finite constant E, 

At this point, Lagrange's method of undetermined multipliers is used 
(refs. 11, 14, and 15) to maximize W, subject to the above zonstraints. 
Equations (1.31) and (1.32) are multiplied by arbitrary constants and addei . 

equation (1.30). The derivative of this sum with respect to n; must be zero 
for all ni when W is an extremllm subject to the given restrictions. The 
constant multipliers are designated here by (a - 1) and 0 ,  respectively, 
merely to put the final results in the traditional form. Then 

From equations (1.30) and (1.33), the most probable distribution of occupation 
numbers is found to be 

the general form of the Maxwell-Boltzmann distribution. The constant a is 
just a normalization factor that equates the sum of all ni to the total 
number n, as required by equation (1.31), 

The summation on the right-hand side of equation (1.35) is called the 
partition function, aesignated here by the sumbol &: 

The partition function is particularly important because all equilibrium 
thermodyramic properties of a system of particles can conveniently be derived 
from it. 



In t e r n s  o f  t h e  p a r t i t i o n  func t ion ,  t h e  Maxwell-Boltzmann d i s t r i b u t i o n ,  
equat ion (1 .34) ,  can be cxprcsscd a s  

and t h e  t o t a l  energy of  t h e  system by 

whi le  t h e  thermodyanmic proh: ,h i l i ty  according t o  equat ion (1.30) i s  given by .. - 

- @ ~ i  
l n  W =  n ~ n n  - z z g i  e ( I n  n - In Q - 5ci) 

Then t h e  entropy o f  a s o l i d - s t a t c  system o r  a  system (-f d i s t i n g u i s h a b l e  
p a r t i c l e s  i s  

I f  each s t a t e  were t r e a t e d  s e p a r a t e l y  with a  degeneracy g  = 1 ,  t h e  same 
r e s u l t s  wculd be obta ined.  For example, tile p a r t i t i o n  funct ion and t h e  
Maxwell-Boltzmann d i s t r i b u t i o n  could then be co l l apsed  from a  sum over  a l l  
d i f f e r e n t  s t a t e s  k t o  a  sum over  a l l  d i f f e r e n t  encrgy l e v e l s  i: 

wi+h 1.estrlts idcntic:r l  t o  those  given bc forc  i n  equat ions  (1.36) and (1 .37) .  

The p a r t i t i o n  func t ion ,  o f t c n  t1csign;ltcd by t h c  symbol Z r a t h e r  than 
Q,  is sometimes c a l l c d  t h e  :;t,?ti~ slar! o r  Zustandssumme. The term s t a t e  sum 
o r i g i n a l l y  indicntcd ;I strnlnlation over only t h e  i n t e r n a l  s t a t e s  o f  t h e  ~ l ; t r t i c l e ,  
whereas t h e  p a r t i t i o n  funct  ion includcs  :I s1lmm:rt ion ovcr  hoth i n t e r n a l  nnd 
k i n e t i c  encrgy s t a t e s .  llcrc t h e  tcrm s t a t c  sum i s  rcservcd f o r  a somewhat 
d i f f e r e n t  concept t o  avoid : r n  :reiI)ig~~i t.!' thilt o f t c n  appears in tlic 1 i t c r a t u r c  
between t h c  p;rrt i  t  ion ftlnct ion a n d  t h c  s t a t c  sum a s  J c f i n c d  he re .  'I'h? pz1lt7:- 
t i o n  fi4nctii1)l i s  tlic stlr:~ o\'cbr. ill 1 s t ; ~ t c \ s  ;lv;ri 1 ; r I ~ l ~  t o  c:rcll p a r t  i c l c  th;rt i s  a 
member o f  t h c  s;;stcm; thcb : : t ' : : . '  :::m i s  t h e  stlm ovcr a1 1 s t i ~ t c s  ; ~ v a i  l s t ~ l c  t o  
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each system t h a t  i s  a  member of  an ensemble of systems tn which the  t o t a l  
system energy E can take a l l  possible  values. This s t a t e  sum is  designated 
here by Qn t o  c a l l  a t ten t ion  t o  both i t s  difference and its re l a t ion  t o  t h e  
pa r t i t i on  function Q: 

Often we l ave  a  s i t ua t ion  where the  individual p a r t i c l e  energies a r e  independ- 
ent  of one another, i n  which case the  t o t a l  energy may be expressed a s  

where the  sumination extends over a l l  n p a r t i c l e s  residing i n  t he  various 
s t a t e s  with energy ~ k .  Thus 

n 

The sum over a l l  j includes everv possible  s t a t e  k of  every p a r t i c l e ,  so 
we may f ac to r  out n ident ica l  quan t i t i e s  Q: 

F- : f. where the  Q terms a r e  the  s ingle-par t ic le  p a r t i t i o n  functions defined 
d prc.-iousiy. The thermodynamic propert ies  af a system may a l l  be expressed i n  

-. fi terms of  the  s t a t e  sun Qn as well a s  of  t he  p a r t i t i o n  f u n c t i m ;  Cor example, 
588% 

eJ *; The r e l a t ion  between the s t a t e  sun and the  p a r t i t i o n  function given above i s  
b. val id  f o r  dis t inguishable p a r t i c l e s  only; t he  product Qn incltides a l l  n! 

; 22. 
T ~ C  .;:. exchanges between l i k e  p a r t i c l e s  i n  the  system. For gas phase where the  par- 
,5:: 
3 f i  t i c l e s  must be t r ea t ed  z s  indis t inguishable,  t h e  s t a t e  sum is iden t i f i ed  with 
' . 

,*.- Q"/n ! . 
k+ 

1.7 GAS PHASE STATISTICS 

Gas phase d i f f e r s  from so l id  phase in  t h a t  a l l  par:icles a r c  f r e e  t o  
occupy the el l t i re  volume and, fo r  a pure phase, the  p a r t i c l e s  a r e  ident ich l  

'-: and therefore indis t inguishable from one another. This ind is t inguishabi l i ty  
::. changes the s t a t i s t i c s  s ince the n! permutations of the r, p a r t i c l e s  with 
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one another represent  a s i ng l e  observable s t a t e  of t h e  system. Thus, t h e  -7. 

thermodynamic probabi l i ty ,  t h a t  is, t he  t o t a l  number o f  d i f f e r e n t  ways t h e  
p a r t i c l e s  can occupy t h e  ava i lab le  energy l eve l s  i with a given s e t  o f  occu- 
pat ion numbers n i ,  becomes .-3 

; i :  
i n  place of  equation (1.27), t he  s o l i d - s t a t e  r e l a t i o n .  f I 

! 
0 1 
t One might ob jec t  t h a t  equation (1.45) could be  l e s s  than uni ty  i f  occupa- 1 - is: 

* 
; r -:~ t i o n  numbers n i  were much l a rge r  than the  ava i lab le  degeneracies g i .  How- -. -$ 1 

# g ever,  the p a r t i c l e s  a r e  so f a r  apar t  i n  the  gas phase t h a t  t h e  degeneracies of 5 t ava i lab le  k ine t i c  energy s t a t e s  (Zerived i n  ch. 3) a r e  much l a r g e r  than t h e  '. 1 ;:: 
t. number of  p a r t i c l e s  ava i lab le  t o  f i l l  them. This means t h a t  t h e  most probable 
i occupation numbers i n  any s ing i e  s t a t e  a r e  0 and 1. One immediately sees  t h e  1 .' I ? 

3- advzntage gained i n  summing over energy leve ls  with la rge  degeneracies r a t h e r  Z ,.', 

r t @ than summing over a11 s t a t e s  with degeneracy one; the  occupation numbers n i  -:, 4 .~- 
can then become la rge  enough t h a t  S t i r l i n g ' s  approximation can be used f o r  t h e  1 

4 f a c t o r i a l  quant i t i es .  Also, s ince  t he  g; a r e  much l a rge r  than the  n i ,  one .i 
can see  t h a t  W is indeed l a rge r  than uni ty .  The logarithm of  W f o r  gas v. f :  

,, . phase systems is  + j j 
9 ; 

I 

& -x f. In W = (ni Zr. gi - Zn n i !  ) (1.46) 
J. Z 
r': which, with S t i r l i n g ' s  approximation, becomes 

I 

$ 

Z 

wbere again only terms of order  n i  a r e  re ta ined iz t h e  l a s t  expression 
above. Except f o r  t he  constant term, t h e  funct ional  r e l a t i o n  between W and f 
n i  is the  same as i-, equation (1.30) and leads t o  t h e  same form f o r  t he  
Maxwell-boltzmann d i s t r i b u t i o n  a s  before,  equation (1.37). Also, t h e  t o t a l  !l . I f 

'd 
energy of  t he  system is again given by equation (1.38). However, t h e  thermo- 3 

dynamic probabi l i ty  now has a s l i g h t l y  d i f f e r en t  r e l a t i o n  t o  t p e  n a r t i t i o n  
function Q: 

 BE^ 
i n ~ = n - " C g ~ e  Q (In n - Zn Q - 3 ~ ; )  



and the  'entropy of a gas phase system of pa r t i c l e s  is 

This appears t o  be somewhat s imilar  t o  the  expression fo r  entropy of  a sol id-  
s t a t e  system of pa r t i c l e s  given by rquation (1.40), except f o r  the  constant 
-nk(Zn,n - 1). However, t h i s  constant is  very important i n  establishing 
reference levels  f o r  the  f r e e  energies and the  c r i t e r i a  f o r  chemical equilib- 
rium i n  the  gas phase. Classical thermodynamics alone was umble  t o  es tabl i sh  
a unique reference level of entropy,' and a major contribution of s t a t i s t i c a l  
mechanics and quantum mechanics is  tha t  an absolute value of  entropy is pro- 
vided. The reader can readily sense tha t  the  expression fo r  entropy of a 
l iquid  phase system is  something intermediate between equations (1.40) and 
(1.49), representing a case i n  which the  pa r t i c l e s  a r e  ne i ther  s t r i c t l y  local- 
ized nor free. S t r i c t l y  speaking, the  above models a re  not en t i r e ly  precise 
f o r  the  so l id-s ta te  and gas phases e i ther .  In so l id  s t a t e ,  atoms can d i f fuse  
through the  crys ta l  l a t t i c e  and interchange with one another, leading t o  a 
cer ta in  degree of indist inguishabil i ty of  the  pa r t i c l e s .  Similarly, diffusion 
i s  slow in  very dense gases leading t o  a cer ta in  degree of  d is t inguishabi l i ty  
of the  pa r t i c l e s  according t o  t h e i r  position. However, these e f fec t s  can be 
t rea ted  most eas i ly  by considering them t o  be perturbations on the  idealized 
mcdels presented previously ra ther  thanattemptingto work from a more exact 
model a t  the  s t a r t .  

A t  f i r s t  glance, one might think tha t  the entropy of a gas is  l e s s  than 
tha t  of a so l id  because of the  large negative fac tor  -nk(Zn n - 1) added t o  
the expression fo r  gases, equation (1.49). However, t h i s  is  not the  case; the  
available degeneracies i n  the gas a re  so much larger  than i n  the  sol id  phase 
tha t  the entropy increases by a large amount when a so l id  system of n par- 
t i c l e s  is  vaporized. This agrees with our i n t u i t i v e  sense tha t  the  uncer- 
t a in ty  in  the s t a t e  of a system is  great ly increased as  it transforms from the  
so l id  t o  the  vapor phase. 

Jus t  a s  fo r  so l ids ,  the  thermodynamic probabil i ty W, entropy S, and 
other  thermodynamic properties of gas phase can be related t o  the  s t a t e  sum 
Qn in  place of the  s ingle-par t ic le  pa r t i t ion  function Q. However, i n  t h i s  
case, 

and the expressions fo r  W and S become 



which are identical to the expressions derived for the solid-state, syste.~. In 
this sense, the state sum Qn is a somewhat more universal parameter than the 
single-particle partition function Q. 

-. ' 
g ' .  
'* ,:;$ . &: . .,j*.. Because of the :onfusion that exists between the partition function Q . 

gc and the state sum Qn, the statistics of gas phase are sometimes treated as 
I though the particles are classical and therefore distinguishable, leading to # '*\ the same expressions as for the solid phase. Then, the single-particle parti- 

t. 
.5 tion function Q is shown to be proportional to the available volume (as in 
6' 
r .  

ch. 3) and the argument is made that the free volume per particle is the total 
-. . volume V divided by the total number of particles n. The rationale given 
5 for this assumption is that V/n is the average volume available which is 
p ...-. " - 
r- - free of perturbation from neighboring particles and that collisions with the 

&. -- - 
neighboring particles limit the number of free-particle momentum states that 

I should be counted in evaluating the degeneracies gi. This limitation of the 
?." + free volume introduces the additional factor n-l, which leads to the same 

results obtained above, where the gas was modelled as a collection of parti- 
L .  cles free to move without. perturbation throughout the entire volume V. 
.L 

I Although collisions with other particles inhibit some of the momentum states 
1 available in a gas system of particles, the mean free path between collisions 

. ! is known to be much larger than (V/n)lI3. Thus putting the gas particles in 
! i j  potential boxes of size V/n is physically unrealistic, even though the 
\ ,  

results obtained with this model are valid. 
i 

i 

The remaining thermodynamic properties of a system can now be derived 
from the foregoing results for the thermodynamic probability, the distribution 
function, and the entropy. However, we digress for the moment to discuss 
classical analogs to the Maxwell-Boltzmann distribution, to the partition func- 
tion and the state sum, and to evaluate B in terms of temperature. 

i 1.8 CLASSICAL STATISTICAL MECHANICS 
I 

The Maxwell-Boltzmann distribution expressed in integer form, 
equation (1.34), is obviously appropriate for quantum particles Hhere one 
needs to sum over discrete or quantized states. However, these states often 
lie close together and can conveniently be treated as a continuum, in which 
case the equivalent classical integrals for the partition function and the 
state sum are appropriate. In fact, the integration is often easier to per- 
form than the summation. In such integrations, a quantum energy state 4 
corresponds to a volume element of classical phase space dp dq, which is a 
shorthand notation for a product such as & @$ @B dx dy da, involving all 
momenta and coordinates available to the particle. The Maxwell-Boltzmann dis- 
tribution of equation (1.34) may thus be expressed in differential form as 

where p represents the density of the distribution in particle phase space 
and H ( p , q )  is the energy bf the particle, in general a function of all the 



p a r t i c l e  coordinates q and momenta p. The constant mult ipl ier  n/Q has 
already been chosen t o  norr~rslize the  in tegra l  of  a l l  dn t o  the  t o t a l  number 
of pa r t i c l e s  n, where the  quantity Q is the  phase SntegraZ: 

' . .  - 

which is the  c l a s s i ca l  analog t o  the  pa r t i t ion  function. The integrat ions a r e  
performed over all  the  coordinates end momenta available t o  the  pa r t i c l e ,  
which lay be a s izeable number i f  the  pa r t i c lo  is a polyatomic molecule. For 
a s ingle  ' s t ruc ture less  pa r t i c l e ,  the  in tegra l  is sixfold,  corresponding t o  
three  independent coordinates and three  independent momenta. T5e Jegsneracy 
g does not apgear because s t a t e s  with the  same energy a r e  automatically 
counted whe11 integrat ing over a l l  coordinates and momenta, which is equivalent 
t o  s e t t i n g  the  degeneracy g t o  unity and summing over a l l  states t o  obtain 
the  pa:*tition function (as i n  the  first expression of  eq. (1.36a)) . 

One difference between the  phase in tegra l  and the  p a r t i t i o n  function 
remains; equation (1.52a) i s  a dimensional quantity and the value of  the  in te-  
gral  depends on the  uni ts  chosen f o r  the  coordinates and momenta; the  p a r t i -  
t ion  function, on the  other  hand, is dimensionless. Before the  advent of 
quantum theory, there was no way t o  choose one set of un i t s  over another, and 
Gibbs had no choice hut t o  leave the  phase integral  i n  the  form of equa- 
t ion  (1.52a). In f a c t ,  the  c lass ica l  re la t ions  could be expressed equally 
well i n  terms of  ve loci t ies  and coordinates ra ther  than momenta and coordi- 
nates. The l a t t e r  were chosen here with the  advantage o f  hindsight provided 
by the  Heisenberg uncertainty principle (see ch. 3), which shows tha t  a s ingle  
s t a t e  of the  pa r t i c l e  includes a region of phase space with the  s i z e  

where h is the  Planck constant. This  establishes the  re la t ion  between un i t s  
tha t  must ex i s t  so the  phase in tegra l  quanti tat ively agrees with the  pa r t i t ion  
function. Thus Q is written i n  dimensionless form as  

- ...... 

where f,  the  r i abe r -o f  d,egrees of  freedom, is defined a s  the  number o f  inde- 
pendent s e t s  of  space and momentum coordinates t h a t  appear i n  the  energy 
function 61. 

The choice of the  pa r t i cu la r  s e t  of  coordinates and momenta used remains 
a rb i t r a ry  because the  best  choice, dependent cin the  functional form of the  
eiterip H(p,q)  , is tha t  se,: which permits the  in tegra l  t o  be evaluated most 
easily. For the  f r ee  pa r t i c l e s  t rea ted  i n  chapter 3, the Cartesian coordinate 
s e t  i s  most convenient, for example 
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But other  coordinate sets, such a s  cyl indrical  'coordinates or  spherical '  - A 

coordinates, f o r  example, may be mquired f o r  d i f f e m t  'problems, The appro;$, . , 

p r i a t e  s e t s  a r e  ca l led  oonjugatcl momenta and oooILI€ntztiar' and the  uni ts '  of each 
must be chosen so tha t  t h e i r  products equal the  Planck constant. The energy 

.., function must be expressed i n  terms.qf a ,conjugate set, and when thus h., .',--t, It.  1 
3;' 

I expressed it is cal led  the  HdZtonian. A conjugate s e t  of momenta and coor- 5 , .  , .,. 
;,%I 1 dinates pi,q; is a set tha t  puts  the  Hamiltonian d i f fe ren t i a l  equations o f  
& . ; /  
I :  motion i n  cwmiocrt form, namely, 

t'. *. 
5 
:.I f 
P ,  

Usually, the  coordinate system is chosen first so tha t  it conveniently 
f i t s  the  boundary conditions of  the  problem a t  hand, thereby simplifying the  
mathematics. The conjugate momenta f o r  these coordinates a r e  then found 
according t o  the  following recipe : 

1. The Lagrangian function L, the  difference between the  k inet ic  energy 
T and the  potential  energy V, is  expressed i n  terms of the  chosen coordi- 
nates and t h e i r  f i r s t  derivatives with respect t o  time a s  

2. The momentum pi, which i s  conjugate t o  qi, is simply the p a r t i a l  
derivation of  L with respect t o  k: 

3. The time derivatives t$i a r e  determined a s  functions of  the  conju- 
gate s e t s  pk and qk from the inverse re la t ion  t o  equation (1.56). 

4. Finally, the  Hamiltonian is expressed as a function of just  the 
conjugate s e t  of  coordinates and momenta: 

The derivation tha t  equation (1.57) i s  indeed the  t o t a l  energy T + V and 
tha t  the  equations of motion take the form of equation (1.54) may be found i n  
standard t ex t s  on mechanics and quantum mechanics (e.g., re fs .  13 and 18). 

In many cases, the Hamiltonian function can be formulated by inspection, 
and one need not res0r.t t o  the  recipe above. In more complex cases, following 
the  recipe may be the best way t o  keep track of  a l l  the  terms involved. Of 
course, once the phase integral  has been s e t  up in  terms of the conjugate 
coordinates and momenta, the  same value of  the  in tegra l  may be found by any 
equivalent transformation of coordinates. For example, it is often convenient 
t o  change momentum-space coordinates t o  energy-space coordinates. Then the  
degeneracy of s t a t e s  having the  same energy is simply the  absolute magnitude 
of  the  Jacobian fo r  the t r ans fon~a t ion  



' In the absence of external or intermolecular forces, the energy of the 
gas molecul~ is independent of the space coordinates (such as x ,  y, and a). 

. Integrating over these coordinates then simply yields the available volume V. 
Thus a relation valid for dilute gases in the absence of external forces is 

Note that for gases (Qln) is the quantity on which the thermodynamic probabil- 
ity W and the entropy S depend (eqs . (1.48) and (1 -49)) . Thus the appro- 
priate volume that enters these definitions is the free volume per molecule, 
V n  If I.' is the molar volume, then the appropriate number of molecules is 
the Avagadro number N. 

A y-space phase integral (also used in the literature) is the classical 
analog to the state sum as defined previously; y-space is the 6n-dimensional 
space in which the ensemble is treated; each system in the ensemble is 
described by a point in y-space. The Hamiltonian of such a system is gener- 
ally a function of all 6n momenta and space coordinates available to the n 
particles of the system, and the y-space phase integral may be expressed as 

Qn = 1 1 .  n! h3n . .$e-BH(p*q)dT1 dp, • dq,, 

Note that the factor n! is included in the denominator to account for the 
interchangeability of the particles,-without changing the state of the system 
(see section 1.5). If, and only if, the Hamiltonian can be expressed as a sum 
of independent single-particle energies, all with the same functional form 
~(~isqi) : 

then the integral can be decomposed into n identical, single-particle phase 
integrals Q: 

The y-space phase integral is convenient to use later (ch. 8) to analyze the 
corrections to ideal gases required to account for particle interactions. 



1.9 EVALUATION OF 8 

The constant B determines the total energy in accord with 
equation (1.38). If the results of kinetic theory are assumed to be estab- 
lished, 0 can be evaluated simply by considering the special case where e 
is just the kinetic energy of a free particle, namely, (Q + py2 + pa2)/-. 
Expressing the momenta in terms of the velocities (px = m&, etc.), one finds a 
differential form of the distribution function, equation (1.51), 

where the normalization is already adjusted to n molecules pcr unit volume. 
Equation (1.63) is just the familiar Maxwell-Boltzmann velocity distribution 
given by the kinetic theory of gases (ref. 11) and, by a comparison of terms, 

Other ways can be devised to evaluate 0. For example, if the ideal gas 
law is accepted as an experimentally proven relation for dilute gases, the 
pressure of gas particles in a Maxwell-Boltzmann distribution can be calcu- 
lated as a function of 0 and equated to the ideal gas value nkT. The 
details are left as problem 1.1. 

Problem 1.1: Deternine the pressure o f  a d i lute  gas (zero interaction energy between molecules) by 
calculating the f lux o f  the normal component o f  momentum over a unit surface for the distribution given by 
equation (1.63). Show that p = n l 6 ;  thus 6 must equal (&Z')-l i f  the perfect gas law i s  accepted as valid 
for dilute gases. 

The significance of B does not depend on the restricted nature of the 
problem considered above and equation (1.64) is a general relation. In fact, 
the quantity B would serve to characterize the state of a gas just as well 
as T, but we have grown so accustomed to thinking in terms of temperature, 
that it is well to continue to express thermodynamic relations as functions of 
this parameter. 

The average kinetic energy per molecule for the distribution of equa- 
tion (1.63) is 

Thus, a fundamental definition of temperature is a quantity proportional to 
the average kinetic energy of the molecules in a gas, when their individual 
kinetic energies are distributed in a Maxwell-Boltzmann relation. Normally, 
one need not consider other distributions for the kinetic energies in gases 
since the collision-induced relaxation to the Maxwell-Boltzmann distribution 



of velocities is very rapid, the order of the mean collision time. However, 
nonoquilibrium distributions will often be encountered in connection with 
internal energy states, which may be out of equilibrium with the kinetic modes 
of energy. 

The internal energy of a gas aolecule is normally independent of the 
kinetic energy of the molecule, and the velocity and internal energy coordi- 
nates are then separable. In this case, the total molecular energy may be 

1 
expressed as 

j 

: where E i n t  represents the rotational, vibrational, and electronic energies 
of the molecule. Then the integration over internal energy coordinates in 
equation (1.51) yields identical factors in the numerator and the denominator. 
Thus the average kinetic energy has the same form as equation (1.65), and T 
retains its significance as a measure of this kinetic energy, whether other 
modes of energy are available to the molecule or not. The following problems 
are designed to convey the concept that a mixture of gases in complete equi- 
librium can have only one temperature, and that a separate temperature-like 
quantity can be used to characterize each mode of energy frozen out of equi- 
librium, that is, each mode for which energy does not exchange readily with 
kinetic energy. 

1 Problem 1.2: Show thet, for a mixture of different gases in complete equilibrium, only one factor 6 
B appears in the derivation of the most probable distribution. It follows that the same temperature applies to all 

components of the gas. 

Problem 1.3: Show that, if a gas is frozen in a state out of equilibrium, the number of independent 
Lagrange multipliers Bk needed to describe the most probable state of the gas is the nucnber of modes of energy, 
or combifiations of modes. in which energy is conserved (frozen). These constants are often regarded as tempera- 
tures, or pseudo-temperatures, that would describe the kinetic energy of the gas if it were in equilibrium with 
the internal energy mode in question. Note that the most probable distribution of internal energy is still 
Boltzmann in form, even though it may be restrained from reaching equilibrium with the kinetic enecgy mode. 

1.10 EQUIPARTITION OF ENERGY 

One of the important consequences of the Maxwell-Boltzmann law is the 
equipartition of energy. The statement is often made that, at equilibrium, 
(1/2)kT is the average energy per molecule in each degree of freedom. Equa- 
tion (1.65) is a special case that illustrates this result for three degrees 
of fretdom. However, this statement is not general enough to be satisfactory. 
For example, it is somewhat troublesome to explain why a harmonic oscillator 
should have two degrees of freedom, when only motion in one direction is 
involved. The reason is, of course, that the harmonic oscillator has a poten- 
tial energy mode associated with its position coordinate as well as a kinetic 
energy mode associated with its momentum; therefore, two degrees of freedom 
are associated with each direction of motion in this case rather than one 
degree of freedom with each direction of motion as for the particle in poten- 
tial free space. A more general statement of the equipartition principle that 
clearly defines the meaning of a participating degree of freedom is as follows: 
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Theorem: I f  the energy R becomer infinite at the limit of eacn of the sets of conjugate coordinates qi 
and mnentr p f ,  then rt equilibtium. 

"' ' i J; , , 

I 
,t 4 + .  i To prove t h i s  theorem, l e t  q .  = q l .  Then, from the  d i f f e r e n t i a l  form of 
-2,' t '  ' i t he  Boltrmmn d i s t r i bu t ion ,  equati8n (1.51) , t he  average value of q l  (aH/aql) 
'I I is 
.i ' , 

Y 

I 

,- _-- The in tegra l  can be wr i t ten  a s  
7 

which can be integrated by p a r t s  over q l  t o  give 

The f i r s t  term vanishes i f  H becomes i n f i n i t e  a t  the  l imi t s  a and b ( these 
limits a r e  += i n  Cartesian coordinates).  The in t eg ra l  i n  the  second term I 
j u s t  cancels t he  phase in t eg ra l  Q so t h a t ,  a s  s t a t ed  by the  theorem, 

The same r e s u l t  holds f o r  any of the qi o r  p j  terms. 

Typically, the f i r s t - 2 r d e r  terms i n  molecular energy a r e  quadrat ic  i n  
momenta and coordinates.  In the  most general case,  l e t  Z and be the  num- 
ber  of d i f f e r en t  momenta and coordinates,  respect ively,  involved i n  the 
quadrat ic  terms: 

The coef f ic ien ts  aij and b . .  a r e  constants  o r  functions of the remaining 
23 coordinates P ~ + ~ ,  . . . ~, ,q, , ,+~.  . . q,. For genera l i ty ,  a term V t h a t  is 

not quadrat ic  i n  these remaining coordinates i s  included. The sums a r e  homo- 
genous functions of  order  2 ,  so Euler 's  theorem ( r e f .  15) can be a p ~ l i e d  t o  
transform the  energy expression t o  



Taking the  average value of both s ides  and using equation (1.67e), one obtains  

In many p rac t i ca l  cases,  t he  value of V is zero o r  nearly so, but it 
has been included here t o  a l e r t  the  reader  t o  the  f a c t  t h a t  t h i s  t e n  can 
appear. In any case, each coordinate and each momentum t h a t  appears only i n  
squared terms i n  t h e  expression f o r  B contr ibutes  (1/2)kT t o  the  average 
energy per  molecule a t  equilibrium. Note t h a t  t h e  number of  squared terms 
does not matter,  but  t he  number of  independent coordinates involved in  these 
terms determines the  mult iple  of  kT/2 contributed t o  t he  average energy. 
With t h i s  der ivat ion i n  mind, t he  p r inc ip l e  of equipar t i t ion  of energy can be 
applied i n  more than j u s t  a cookbook fashion. 

1.11 DERIVATION OF THERMODYNAMIC PROPERTIES FROM THE PARTITION FUNCTION 

From t h i s  point on, t he  t o t a l  number of  molecules n is  taken t o  be 
equal t o  t he  Avagadro number N, t he  t o t a l  f r e e  volume accordingly i s  the  
molar volume V and extensive proper t ies  a r e  evaluated f o r  1 mol of  gas. 

The energy per  mol is, according t o  equation (1.38), 

Note t h a t ,  ever. a t  absolute zero T, there  can be a f i n i t e  p a r t i c l e  energy, 
ca l l ed  the  aero point energy c0.  For example, t h i s  might be the  energy 
connected with nuclear s t ruc tu re ,  o r  d i ssoc ia t ion ,  o r  ionizat ion of t he  p a r t i -  
c l e s  involved. Although r a the r  high temperatures, up t o  lo5 OK, a r e  of  i n t e r -  
e s t  here,  these temperatures a r e  s t i l l  r e l a t i v e l y  low f o r  the  purpose of 
populating even the  lowest-lying exci ted nuclear energy leve ls .  Thus, f o r  
p rac t i ca l  purposes, the  nuclear energy may be considered a constant over 
temperature range of i n t e r e s t  here,  and the  value zero is conventionally 
assigned t o  t h i s  constant.  However, d i ssoc ia t ion  and ionizat ion energy of 
ce r t a in  atoms and ionic  p a r t i c l e s  must be accounted f o r  by absorbing these 
energies i n t o  the  zero point energy eo.  Also, v ibra t ing  molecules have a 
zero point energy, (1/2) hu, (as  discussed in  ch. 5 ) .  Then equation (1.35) 
takes t he  form 

and the energy per  mol becomes 
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If the symbols C i  are understood to represent the energies measured relative 
to the zero point energy E ~ ,  then equation (1.72a) takes the same form as 
equation (1.70) except that the zero point energy per mol Noo or Eo is 
included: 

Now if the degeneracies are independent of t3, we see by inspection that the 
energy can simply be equated to a total differential of Zn &: 

d 'In E -  Eo' -I+ 

I or, in terms of temperature, 

where R is the universal gas constant, Nk. Equations (1.73) give the rela- 
tion between the energy and the partition function for a solid-phase system of 
locali zed distinguishable particles. However, for the gas phase syster,l of 
indistinguishable particles, the degeneracy of the kinetic energv modes is a 
function of volume, which, in turn, is a function of B and prv sure p. In 
fact, for ideal or dilute gases, where the intermolecular interactions are 
ncgligible, we found from partial integration of the phase integral, equa- 
tion (1.59), that the partition function is proportional to volume. Thus, the 
energy of a gas must be equated to a partial derivative of In Q taken at 
consth,lt volume: 

The specific heat at constant volumc is thlis 

The entropy nray be found by integrating equation (1.75) : 

(I. 76a) 



Equation (1.76a) can be integrated by p a r t s  t o  give 

where Qo is the  p a r t i t i o n  function a t  zero temperature o r ,  ir. other  words, 
the  ground s t a t e  degeneracy go. The constant of in tegra t ion  So i s  deter-  
mined by a comparison between equation (1.76b) and the  r e l a t i on  

which is  equivalent t o  equation (1.49) except t h a t  f i n i t e  zero s t a t e  energy 
L' is  included. By inspection, one sees t h a t  So must be 

and the  entropy per  no1 mly f i n a l l y  be expressed as  

Note t h a t  it makes no difference whether Q o r  Q/N i s  used in  the  idgarithmic 
der iva t ives ,  but the  r a t i o  &IN must appear i n  the  second term of equa- 
t i on  (1.79) \'.a gas phase is considered. Often the symbsl Q alone i s  
understood t o  s igni fy  the  r a t i o  Q / N  fo r  the  gas phase, but the notat ion t h a t  
shows e x p l i c i t  dependence on N i s  re tained here t o  c a l l  a t ten t ion  t o  t h i s  
l a t e r  when discussing chemical equilibrium. 

A t  t h i s  point ,  one might ask whether entropy s a t i s f i e s  the  de f in i t i on  of 
hn extensive property ( i . e . ,  the  sum of  cntropy of the pa r t s  of  a system 
equals the  t o t a l )  i n  view of the fac t  t h a t  S appears t o  vary as  a nonlinear 
function of N,  namely, -In N ,  according t o  equation (1.79). However, i n  
chapter 3, the  k ine t i c  energy p a r t i t i o n  function f o r  f r ee  p a r t i c l e s  i s  found 
t o  be proportional t o  volume Y Thus, so long a s  the  r a t i o  Y / N  remains 
cons tan^, t he  entropies  of the  p a r t s  of a system a r e  addi t ive  as  rcquircd. I f ,  
however, the  volume i s  allowed t o  change, such a s  when a p a r t i t i o n  i s  rcmovcd 
between two masses of d i f f e r en t  gas, the zero point entropy of  each gas i s  
changed by the  increase i n  volume and the  r e su l t i ng  c h a ~ g c  in entropy i s  known 
a s  the  entropy of mixing. 

The f r e e  energy F i s  defined a s  

Q F - E, = ( E  - E,) - T S  = -RT In - RT (1.813) 



and, according to equation (1.9), the pressure is 

For the ideal or dilute gas, the particles behave essentially as free parti- 
cles, in which case 4 is proportional to V (see eq. (1.59)), so that 

(w)T = 7 (ideal gas) 

(ideal gas) P " 7  

The remaining thermodynamic properties can be cxpressed in terms of those 
given above. Thus, all thermodynamic quantities can be derived from rhe par- 
tition function &, which, in turn, is a function of the independent variables 
T and V. 

Problem 1 . 4 :  Show t h a t ,  i f  2 is proport ionr  to  V ( i . e . ,  t h e  pas i s  i d e a l ) ,  

Show t h a t  the enthalpy  i~ 
1 

s - E~ R T ~  (w)p 
Also  show that  t h c  entropy o f  a gas may be expressed  as 

S - RT (w)p R ln $ 
and t h a t  t h e  f r c c  cnthalpy  is  

G - E,  = -RT In 

1.12 GIBBS' DEFINITION OF ENTROPY 

The Boltzmann definitions of entropy considered previously (eqs. (1.22a) 
through (d)) are special cases of a yet more fundamental definition provided 
by Gibbs: 

where p -  is the probability that the system is in the state j and tne 
summatioi extends over all possible states. This definition is most offcil 
used in information theory (e.g., when the concern is about how much jiiformation 
can be abstracted from the system rather than how much work). Entropy becomes 
a measure of the information content that cannot be abstracted given a certain 



level of noise (i.e., temperature). Incidentally, comparisons between 
information theory and thermodynamics immediately suggest the equivalence 
between information and work. Our present concern, however, is t o  show tho / equivale~cs between equation (1.22e) and the Poltzmann definition of entropy. 

I 
rC 

Consid,?r first a system constrained to a given distribution functi 3n for 
the set of occupation numbers ni. The W equivalent states of this system 
are assumed to be e+ually probable, thus p = W-1 and, for such a system, 

-4 

j I 

i 

w 1  1 S = - k x  y k - = k Z n W  W (1.22b) 
j= 1 f 

which is the relation used in section 1.5. 

In a real system, we do not know the occupation numbers n i  cxactly 
because these values fluctuate because of collisions or other processes; this 
lack of precise knowledge means that the entropy of the system is increased so 
far as we are concerned. However, if we know the occupation numbers very 
closely, as for systems at equilibrium or when we are following in close 
detail a chemical relaxation process for example, then we can assign the 
entropy rather precisely with equation (1.22b). To be more precise, we know 
only that the system maintains constant energy, and we assume that in equilib- 

I - -  
rium all sets of occupation numbers n; that conserve this total energy are 

i 
equally probable. Then pk = a-I and the equilibrium entropy of real systems 4 1 ,  is f " 1 S = - k  ~ ~ Z n i i = k Z n Q  (1.22~) 

j= 1 
i 
i! 

@: g~Yr' The increase in entropy k Zn Q/Wmm over the approximate equilibrium entropy 
'.kc 
@.!.- k Zn Wma is a measure of the uncertainty introduced by fluctuations. The 

P. difference between equation (1.22~) and (1.22b) is somewhat academic since Sl 

I 
&$ ,.yz.) is usually equated to W,, in numerical evaluation. 
&. 

1 
J P: $,,; 

-*' i g::, 
Still another definition of entropy is occasionally encountered in the 

Q :  literature. A system of n  identical particles may be considered as a collec- * t*:" tion of n subsystems, each with an identical entropy -kz pk Zn pk, where 
. .. 

@ .  6;.. the summation now extends over all energy states available k to the individual 
, &.,' particles. The entropy of the system is then the sum of all n parts of the _- # , system: 

$2' ,F,. 

is' 

Equation (1.22f) is the entropy for a system of distinguishable particles such 
as in the solid phase where the particles are localized. For the gas phase, a 
factor (-In n ! )  is added to account for the fact that n! of the different 
states for distinguishable particles corresponds to just one state of the 
indistinguishable, q-aantized gas particles: 



Now, given the distribution function n; for particles in energy levels cia 
which may have degeneracy gi, the probability pk can be expressed as 

Equation (1.88) makes use of the assumption that the occupation numbers in 
degenerate states of the same energy are equal, a relation known to be valid 
for the equilibrium state at least. Then 

The summation may be performed over the degenerate states to give a s~vnmation 
over all levels i: 

Substituting the value of Zn W derived from equation (1.45) with Stirling's 
approximat ion 

one obtains 

which is the same relation defined in section 1.5. Thus we see that the Gibbs 
formulation of entropy is completely equivalent to the Boltzmann formulations 
used previously. 

Let us now investigate the order of magnitude of the fluctuation 
correction term k Zn(Q/Wmm) in equation (1.22d). Let ni be the number of 
particles in each -Fergy level i of a gas at equilibrium (hence, W = Wnm): 

In a small fluctuation from equilibrium, let 6; be the number of particles 
shifted from level i to adjacent levels, which we assune will have nearly 



I 
I 
I 

the same degeneracy gi and nearly the same o~cu;~tion number nil both of 
, which are very large numbers. The 6; values may be either positive or nega- 
I tive integers and the sum of all 6; vanishes. The ratio of W, the fluctu- 
! ating value of the thermodynamic probability, to W- can then be expressed 
t 

I as 

The logarithm of this ratio is, with Stirling's approximation, 

Expand the logarithms and assume that very few of the numbers in each level 
are shifted (6i << ni) : 

I - 
f r 

Now since the gi and ni terms are assumed to be nearly equal between the 1 
d 

adjacent levels where exchanges occur and the sum of all 6; vanishes, the 5 
i first two terms of the summation in equation (1.96) are of small order. The 

largest term is the quadratic term in (6i/ni)2 
1 
3 i 
1 I 

The possible number of states with changes 6,: in cell i are 
designated by Ri 



Now let all 6; terms take all possible values independently of one another. 
(This actually overestimates the total number of possible states since the 6i 
are restricted by the fact that the sum of all 6.- must vanish.) 

This sum is exactly the negative of a sum that was neglected in using 
Stirling's approximation for the & Znni! (see eq. (1.47)). Since the esti- 

2 
mate of Zn Q/h',, found above is an upper limit, the approximation 
Zn $2 = Zn W,, is indeed valid when the numbers Y L ~ ,  which contribute appre- 
ciably to the total thermodynamic probability W, are all very large. 

Problem 1.5: Show t h a t ,  i f  a pure uniform gas i s  divided i n t o  several  p a r t s  with t h e  same number dens i ty ,  
N i / V i ,  t h e  wm of t h e  entropy o f  t h e  p a r t s  equals  t h e  entropy of  t h e  whole: 1; S i  a S .  

Problem 1.6: Show t h a t ,  i f  a co l l ec t ion  of gases a r e  mixed with mol f r a c t i o n s  x i ,  t h e  entropy f o r  1 nci of 
t h e  mixture is  

where S i  is t h e  entropy per mole o f  species  i. The p o s i t i v e  term ( - 3  x i  Zn x i )  i s  o f t en  ca l l ed  t h e  entropy of  
nixing. However, it merely represents  a cor rec t ion  t o  t h e  zero point  rn:lar en t rop ies  t o  account f o r  the  f a c t  
t h a t  a mole o f  pure species  i would, a t  the  same densi ty a s  the gas spec ies  i, occupy a l a r g e r  volume than a 
molar volume o f  the  gas mixture. 

1.13 QUANTUM STATISTICS 

In the statistics of particles considered thus far, each degenerate state 
available to the particles was treated as a distinguishable state. The par- 
ticles themselves were considered distinguishable in solid phase where they 
are fixed at a definite location, and indistinguishable in gas phase where 
they are free to occupy any position. In either case, the model led to a 
Maxwell-Boltzmann distributi~n as the most probable; only the entropy 
decreased by a constant term -nk(Zn n - 1) \(hen the particles were 
indistinguishable. 

In quantum statistics, the gi degenerate states of energy cell i are 
treater! as a cyclic array of indistinguishable states and a cyclic array of 
gi objects has (go - I)! permutations. This corresponds to the different 
ways of indexing tke degenerate states. (Note the difference between permu- 
tations of cyclical and linear arrays - a linear array of gi objects has 
g$! permutations .) 

In addition, two classes of quantum particles exist - fermions and bosons. 
These particles are described by wave functions developed later in chapter 3 



and thereafter. Fermions are particles composed of an odd number of % 

fundamental particles, each having a half-integer unit of angular momentum. 
(For purposes of this book, we consider only the following fundamental parti- 
cles: protons, neutrons, and electrons.) A collection of fermions is found 
to require an asymmetric wave function, with the consequence that two fermions 
cannot occvpy the same state. Bosons, on the other hand, are particles corn- ! 

i posed of an even number of fundamental particles, and a collection of bosons ; 

. is required .to have a symmetric wave function, with the consequence that two 
I , 

or more bosons can occupy the same state. These consequences follow from the . 
Pauli exclusion principle and are discussed in ~nore detail in chapter 4 in i 1 ,  
connection with nuclear spin effects in rotating molecules. For the present, i 
we are concerned with the statistics obeyed by these two classes of particles. 

Fermions are restricted to one particle per state with gi states in r 

e each energy cell. The number of ways ni indistinguishable particles can be 
arranged in gi states is gi!/ni! (gi - ni)! . Note that gi > ni. Thus the 
total thermodynamic probability is (see appendix 1-A for a derivation) 

Now take the logarithm of equation (1.101), add equations (1.31) and ! - 
(1.32) with Lagrange multipliers a and B, respectively, and maximize the ! 

result by setting the derivative with respect to ni equal to zero as before. t 

In this case, the numbers q .  and (g - ni)! can often be small and the use of 
Stirling's approximation is iifficult to justify; nevertheless, the same 
results are obtained once again as with the more rigorous Darwin-Fowler method. g<: The Fermi-Dirac distribution function for fermions is found to be $. 

.g 
& the same form obtained for the Maxwell-Boltzmann distribution except for the I 
.*'" term (+I) added to the exponential function in the denominator. i%: t 

Any number of bosons can occupy each state and, in this case, the (gi-I)! i i cyclical permutations of the states are indistinguishable as well. This 
I , 

cyclical permutation is equivalent to a linear permutation of (gi - 1) parti- 1 

tions between states. The total number of ways to permute (ni + g.f - 1) ? 

objects in a linear array, when ni belong to one class of indistinguishable r 
objects and gi - 1 to another class of indistinguishable objects, is i c 

'Bx. 
(ni + 93 - l)!/ni! (gi - I)!. Thus, in this case, the thermodynamic probabil- 
ity is (again see appendix 1-A) j 

$<. 
&.'. . "r Once again, maximizing the sum of In W and equations ('1.31) and (1.32) with i f &* Lagrange multipliers a and B, one obtains for the Bose-Einstein distribution i 
FC,. f 



d . 
,. .I*- 
. ,  $. : [  . Zp 

of bosons, 

the same form obtained for the Maxwell-Boltzmann distribution except for the 
term (-1) added to the exponential function in the denominator. 

$ 1  Problem 1.7: Show that if Zn +! i s  assumed to be equal to (x In + - x), without restriction, the 
.- . 
t' - 

thermodynamic probabilities of equations (1.101) and (1.103) lead to the nost probable distribution functions 
(1.102) and (1.104). respectively. 

1 One can see that, so long as the factor e is large compared with 
. .. unity, the Fermi-Dirac and Bose-Einstein distributions, equations (1.102) and 

. , 

: - . . -  (1.104), respectively, are practically identical with the Maxwell-Boltzmann 
C .  ' ! distribution, equation (1.34). This is indeed the case wherever normal gas 
* ! temperatures and densities obtain; the differences between these distributions 

become apparent only at exceedingly high densities d/or low temperatures (as 
i shown in ch. 3). One might consider the factors %In;! in equation (1.45) 

6. . 
:L i as expresions for the number of ways n; classical gas particles can be 

assigned to gi states within a unit band of energy. This number is not 
3 necessarily an integer, but it is bracketed by the comparable integer expres- 

sions for the fermion and boson distributions: 
! :  
- ,  n,. 

. - b  

9; ! > >  9i (?li +gi-I)! 
( g  - n)! ni! ni!(gi - l)! 

t provided gi > ni. At normal temperatures and densities, gi >> ni, and, in 
this case, all these expressions are approximately equal. 

1.14 CONCLUDING REMARKS 

Statistical mechanics has made three very significant additions to 
thermodynamics. First, it permits all thermodynamic quantities to be evalu- 
ated from spectroscopic energy level data, which are so precise that the 
thermodynamic quantities can be determined accurately whenever spectroscopic 
data are available. Second, statistical mechanics establishes the absolute 
level of entropy and therefore the level of the free energies relative to the 
zero point energy. Finally, entropy is interpreted as a measure of the proba- 
bility that the system may be found in the given state. Then, if one accepts 
the fundamental postulate of statistical mechanics that all spontaneous pro- 
cesses lead toward a more probable state of the system, the reason entropy 
increases spontaneously and becomes a maximum at equilibrium becomes apparent. 

f i i -~ '~ '  : 1;. : : ;yCILIn OF THE 
OiIiCi:Lli, PAGE IS YOOR 



APPENDIX l-A: DERIVATIONS OF THERMODYNAMIC PROBABILITIES 

Statistical mechanics is based on mathematical expressions for permuta- 
tions and combinations of objects. Those expressions used in the derivations 
of statistical distribution functions are reviewed briefly. 

Consider first the number of ways to arrange distinguishable particles in 
order. The first particle can be chosen from any of the n particles, the 
second from the (n - 1) remaining, the third from the (n - 2) remaining, and 
so on until the nth position is filled with the remaining particle. Thus, 
the number of different ways to arrange n distinguishable particles in order 
is 

If these n particles are now put into a single level where they are 
indistinguishable, all n! of these permutations are the same so far as any 
observable of the system is concerned, and the number of different states of 
the system reduces to 

In the systems of interest, the particles do not all reside in the same 
level, but nl  particles are in level 1, n2 in level 2, . . ., ni in level 
i ,  and so on. So far as an observable of the system is concerned, the ni! 
possible permutations of the particles in level i all yield the same result, 
so the number of equivalent states of the total system (defined in section 1.6 
as the thermodynamic probability) is 

A crystal lattice is a system for which each particle of the system is 
distinguishable by virtue of its position in the lattice. The above expres- 
sion can be used for the thermodynamic probability of such a system if each 
energy state is counted separately, even though some of the states may be 
degenerate, that is, have the same energy level. In practice, for convenience 
of computatjon, the states with the same energy 

E~ 
are usually grouped 

together and the occupation number n i  refers to the total number of par- 
ticles in all g i  states with identical energy. If thew is no restriction 
on the number of particles thqt can occupy each state, the first particle of 
the group n i  can be assigned in g i  ways, the first two can be assigned in 
gi2 ways, the first three in gi3 ways, and so on, until all ni particles 
have separate ways in which they can be assigned. The expression for 
the thcnodynamic probability then becomes 



the relation used in the text to obtain the solid phase distribution law and 
entropy. 

For the gas phase, the particles are free to exchange positions to a good 
approximation and the n! permutations of all possible exchanges are deemed 
to result in the same observable state of the total system. Thus, for the gas 
phase, the thermodynamic probability is taken to be 

The models above describe systems f.:~r which the particles are distinguish- 
able in principle, but subsequently allow exchanges of particles in position 
or energy state so that the observable state of the total system is unchanged. 
These models adequately describe systems of particles that have essentially a 
continuous spectrum of energy and position and a particle density small corn- 
pared with its density of degenerate states - in other words, a system of 
classical particles. 

At low temperatues or high densities, the quantum nature of the particles 
must be considered, in which case the statistics of fundamentally indistin- 
guishable particles must be treated more rigorously. Quantum particles are of 
two types, fermions and bosons. Consider first a system of fermions. Of the 
g i  states available with the same energy E i ,  n i  of these are occupied with 
a single particle each and the ( g i  - n i )  remalnlng are empty. The empty 
states are considered indistinguishable and the filled states are also con- 
sidered indistinguishable, but the filled states are considered distinguish- 
able from the unfilled states since the particles and states are different 
things. Of the gi! different ways to permute the total number of states, 
the n i !  different ways to permute the filled states and the ( g i  - n i ) !  dif- 
ferent ways to permute the unfilled states are considered to result in the 
same observable or equivalent state of the total system. Thus the number of 
ways n i  indistinguishable particles can be assigned to g i  states of equal 
energy with no more than one particle per state is 

Then the total number of equivalent ways all n fermions can be assigned the 
occupation numbers n i  is the product of all W i :  

the thermodynamic probability used for a gas system of fermions. 

For a gas system of bosons, any numb?r of particles can occupy any one of 
the degenerate eqergy states. The total number of ways ni objects can be 
divided by gi - 1 partitions (which group the objects into gi different 



states) is the total number of permutations of ni and gi - 1 things, taken 
together, that is, (ni + gi - I)!. But the ni! rearrangements of the indis- 
tinguishable particles and the (gi - I)! rearrangements of the partitions all 
lead to the same observable state, so the number of different assignments 
available to the ni particles in the gi states, with no restriction on the 
number of particles per state, is 

The total number of equivalent ways all n bosons can be assigned the 
occupation numbers ni is sgain the product of all Wi: 

the thermodynamic probability used for a gaseous system of bosons. 
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CHAPTER 2 - CHEMICAL EQUILIBRIUM 

2.1 S W R Y  

The entropy of a gas system with the number of particles subject to 
external control is maximized to derive relati~ns between the thermodynamic 

+ variables that obtain at equilibrium. These relations are described in terms 
k 1 
*:- of the chemical potential, defined as equivalent partial derivatives of 

F entropy, energy, enthalpy, free energy, or free enthalpy. At equilibrium, the 
;. 
d.; 

change in total chemical potential must varrish. This fact is used to derive 
iri-. the equilibrium constants for chemical reactions in terms of the partition 

3 functions of the species involved in the reaction. Thus the equilibrium con- 
% stants can be determined accurately, just as other thermodynamic propel-ties, 

7- 
from a knowledge of the energy levels and degeneracies for the gas species 

1 $'. 
involved. These equilibrium constants permit one to calculate the equilibrim 
concentrations or partial pressures of chemically reacting species that occur 
in gas mixtures at any given condition of pressure and temperature or volume 
and temperature. 

' 3 

\ 
2 . 2  INTRODUCTION 

According to the fundamental postulate of Statistical Mechanics formu- 
lated in chapter 1, the equilibrium state of a system is the most probable one 
consistent with the constraints imposed on the system. Since entropy 
increases with probability, the equilibrium state is alternatively described 
as that state to which spontaneous processes lead, resulting in a maximum in 
entropy. The word spontaneous is somewhat ambiguous in this statement; usu- 
ally, it means that the irreversible process leading from a nonequilibrium 
state to the equilibrium state is allowed to proceed undisturbed in a system 
kept at constant energy and volume or at cortstant enthalpy and pressure. One 
should not infer that all irreversible processes leading to equilibrium must 

P '  
increase entropy; it is perfectly feasible to devise such a process in which 
the entropy of the internal system is decreased merely by subtracting heat or 
work from the system, for example. 

Generally, as a closed system I L . c . ,  a system with zero mass addition or 
subtraction) approaches the equilibrium state by some arbitrary irreversible 
path (which may include heat addition or subtraction), a typical inequality 
that obtains, according to the results in chapter 1, is 

d E + p d V - T & < O  (2. la) 



One can see immediately that if the system is constrained to constant E and 
- .  constzilt 7 (i.e., the system is isolated from its surroundings), then the 

incremental changes of entropy aS that occur in the system during the irre- 
i 

I versible process are always greater than zero since T is a positive quantity. 
Thus, if' E and V are kept constant, the entropy is maximized as the sys:em 

I I irreversibly approaches equilibrium. Similarly, if S and V are kept con- 
, : 

i ! 
stant, the increments in energy dE are always negative, and the energy is 
then minimized at equilibrium. 

To illustrate how entropy of a closed system can also decrease in an 
irreversible process leadink co equilibrium, we can relax the requirement chat 

.- , 
en'rgy be kept constant, but keep the volume constant as before. Figure 2.1 

+ depicts the path of several such pro- 
€4 cesses with paths along a constant 

volume plane in energy, entrcpy, and 
volume space. One equilibrium condi- 

D 

I 
dEeq tion is represented by the point 0 s ,@. IX" .TO 

in this plane; the locus of all equi- 

Y' librium points at constant volume 
forms the equilibrium state line 0'0" 
in the constant volume E,S plane; 

c- this iine is the intersection of the 
E,S plane with the equilibrium sur- 
r . ,ce, defined by thc equilibrium 
function E ( S , V )  in three-dimensidnal 
E,S ,  and V space. 

Away from the equilibrium sur- 
- -- face, at least three variables are 

s required to define the state of the 
system; only three are required if 
only one degree of freedom of the sys- 
tem is out of equilibrium and one 

Figure 2.1.- Relations between energy additional variable is required for 
E and entropy S in irreversible each additional degree of freedom out 
approaches to equilibrium point 0 of eqililibrium. However, in an i n f i n -  
at constant volume V. itsstmal region next to the equilib- 

rium surface, the state of the system 
can be defined by only two independent variables. In the present case, volumc 
and entropy are chosen as the indepe~ldcnt variables and the systems are con- 
strained t9 a fixed volume. (A fixed volume is a simple constraint to i,apose 
experimenta:ly, of course, though this is not essential to the argument.) 
Thus, in a region very near the equilibrium line along n constant volumc path, 

( 2 .  lb)  

For an arbitrary nonequilibrium path approaching thc cquilibrium 1-ogion a t  thc 
point 0 (fig. ?.I), 



where To is the  equilibrium temperature a t  po in t  0. Thus, i f  t h e  path 
approaches point  0 from lower values o f  entropy (path AO), t h e  slope o f  t he  
path must be l e s s  than To, whereas i f  t h e  path approaches point  0 from 
higher values of  eatropy (path BO), t h e  s lope of  t h e  path must be  g rea t e r  
than To. This ~neans t h a t  t he  pa r t  of  t h e  E,S plane below and t o  t h e  r i g h t  
of  t h e  constant slope l i n e  (aE/aS)v = To through t h e  po in t  O is inaccessi-  
b l e  t o  t h e  system. The equilibrium s t a t e  a t  point  0 can be approached only 
from t h e  region above and t o  t h e  l e f t  o f  t i l l s  l i ne .  If both E and V a r e  
kept cors tan t ,  t he  process approaches equilibrium along l i n e  CL' and t h e  
entropy is  maximized a t  equilibrium. I f  S and V a r e  kept constant,  t he  pro- 
cess approaches equilibrium along l i n e  DO and the  energy is  minimized a t  
equi 1 ibrium. These nonequi l ibrium process paths  a r e  irreversibZe paths. 

f? @< 
The same s i t u a t i o n  holds a t  any poin t  along t h e  equilibrium l i n e ,  o f  

@ . , course. The slope of  any a r t i t r a r y  i i i a v e r s i b l e  process path approaching the  
3' 
?. equilibrium l i n e  is  r e l a t ed  t o  t h e  s lope  of  t h a t  l i n e  a t  t h e  po in t  o f  approach 
p by t h e  inequal i ty  

noneq 

[MV - (%ty O 
(2. l d )  * 

?r 

- 
% - A s  t he  equilibrium l i n e  is  approached from a lower value of  entropy (& > O), - 5. the  siope of t he  path an in f in i tes imal  d i s tance  away from t h e  equilibrium 

! . 
' I point must be l e s s  than the  s lope of t h e  equilibrium l i n e  a t  t h a t  point :  ) . ?  

I 

On the  other  hand, if the  equilibrium point  i s  approached from a higher value ? 
of  entropy (& O ) ,  t h e  reverse  inequal i ty  holds: 

5 
I 

i 
"Oneq f o r  any i r r e  i e r s i b l e  constant In  o ther  words, t he  curvature (a2E/as2) 

t 

volunie process path near an equilibrium point  must be pos i t ive :  

In problem 2.1, the  reader  is asked t o  deduce t h a t  t he  curvature o f  t he  
equilibrium l i n e  ( a 2 ~ / a ~ 2 ) ; q  i s  a l so  pos i t ive .  

Problem 2.1: Consider : nonequilibrlum state described by three variables, nan-ly, V, S, and T. Note that 
S and T are defined by a nonequilibrium distribution function as in chapter 1. For a segment of the process 4 path not at the equilibrium point, the energy is expressed as 4 

i; 

E = E(V, S, T) (2.3a) d 
4 L 



REPRODUCIBILITY OF THE 
Expand the first derivatives of 6 for the nonequilibrium path a b o u t ( & ~ ~ ~ ~ 6 & I d $ D & 3 3 ~ s h ~  that. 
at equilibrium, 

t 
so that energy is minimizd at equilibrium for any process path occurrin~ at constant S and V. i 

The same type of  reasoning can be applied using o ther  s e t s  of  thermo- 
dynamic variables  t o  show t h a t  entropy is maximized by any process occurring 
a t  constant H and p, f o r  example, o r  t h a t  enthalpy is minimized by any pro- 

? 

cess occurring a t  constant S and p .  The most useful  r e l a t i ons  of t h i s  type , 
involve the  f r e e  energies.  The Helmholtz f r ee  energy F is  minimized at equi- 
l ibrium f o r  systems maintained a t  constant T and V, and the  Gibbs f r e e  energy 
G is minimized a t  equi l i t r ium f o r  systems maintained a t  constant T and p (as 
t he  reader  is  asked t o  show i n  problem 2.2). 

Problem 2.2: Show that the Hel~nholtz free energy F is min~mized by an irreversible process occurring at 
constant V and T, which leads to equilibriuni, and that T is minimized b an irreversible process occurring at 
constant F and V, which leads to equilibrium. Show that the curvature ( a Z ~ 3 T 2 ) v  for any process path in a 
constant volume F. T plane is positive at the equilibrium point. Sketch a curve of irreversible process paths 
on the F, T plane about the equilibrium poi~t and show the regicn of this plane which is inaccessible to real 
systems. Deduce similar relations for the Gibbs free energy. 

2.3 THERMODYNAMIC RELATIONS IN OPEN-SYSTEM GAS MIXTURES 

In the  previous chapter,  closed systems composed of  a s ing le  pure gas 
with constant number of p a r t i c l e s  were considered. Now, a system composed of 
a mixture of gases is t r ea t ed  and, f o r  t he  moment, the  number of p a r t i c l e s  is  
l e f t  open t o  external  control .  Then the  thermodynamic proper t ies  a l l  become i 

functions of t he  number ni of each species  involved, a s  well a s  of two o the r  
independent thermodynamic variables .  Let the  entropy take the  form i 

'I 

(2 4) S = S(E,V,nl ,n2, . . .) 

Then the  d i f f e r e n t i a l  of entropy i s  i 

The two p a r t i a l  der ivat ives  of  entropy with f ixed numbers n i  a r e  the  same a s  
though the  system were closed, with a f ixed num>er of pa r t i c l e s .  Then, accord- 
ing t o  the  r e s u l t s  found i n  the  l a s t  chapter f o r  sbch systems, equations (1.3) 
and (1.11), 

, i  
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I A quantity F, the chemical potential per molecule, is defined as 

3 I 

& (2.8) 

where all ram except n i  are maintained constant. The chemical potential 
divided iy the temperature is just the negative change in entrapy created 

-.  when one molecule of species .i. is added to the gas mixture at fixed energy 
W ,  - and volume. The symbol is reserved for the total chemical potential per- 
.. mol and p i  designates the chemical potential per mol of species , or Nvi. 

.?. 

Equation (2.5) can now be expressed as 
* .  

& = $ + @ - ! . C Y j d n i  T T i  (2.9) 

If entropy is to be a maximum (dS = 0) in systems kept at constant E and V ,  
the change in total chemical potential must vanish: 

b y =  ~ ~ d n i = ! l  (2.10) 
i 

Equation (2.10) is very important because it is the genera2 cond<tion for 
thenno&&c equilibriwn. This relation holds for both open and closed sys- 
tems. Note that a closed system is merely a special type of open system for 
which every particle abstracted is re-introduced, perhaps as another species. 

If energy is taken to be the dependent variable, equation (2 -9) is 
conveniently rearranged in the form 

But energy can also be considered a function of the variables V ,  S, 2nd ni, 

, . 

so that the derivative of energy is 
-, 8; 

"i . 
g 
p: 

hi'. ' 
% 
-2, I?. 

The partial derivatives with constant ni are again the values for a closed 
t, ,, 
a*. system with a fixed number of particles found in equation (1.9) ar,d (1.11) : 



so that equation (2.13) becomes 

Now one can see by comparison of equation (2.16) with (2.11) that an alterna- 
\ 

tive definition of the chemical potential per molecule is 

which is the change in energy created when just one molecule of species i is 
added to the gas mixture at fixed entropy and volume. The derivation of addi- 
tional thermodynamic relations of interest is left to the reader as 
problem 2.3. 

Problem 2.3: Show that for a mixture of gases in an open system. 

and that the chemical potential :r may be dcfincd by any one of the partial derivatives: 

Many authors make a point of classifying chemical potential as one of the 
intensive thermodynamic variables since is a derivative of one extensive 
quantity with ~=espect to another extensive quantity, which obviously depends 
only on the gas mixture involved and not on the total amount of mixture con- 
tained in the system. In this sense, all specif ic thermodynamic variables 
measured with respect to a uni.t quantity of gas, such as energy per molecule 
or energy per mol, are intensive properties. Like q, they are derivatives 
or ratios of two extensive quantities. However, a to tal  chemical potenkiaZ 
can be defined for the system which is the sum of all chemical potentials of 
the parts of the system; this total chemical potential is an extensive quan- 
tity just as total energy, total enthalpy, total free energy, or total free 
cnthalpy. This group of properties clearly belongs to a different class than 
the inherently intensive properties such as pressure, temperature, and density. 
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2 . 4  CLOSED-SYSTEM GAS MIXTURES WITH CHEMICAL REACTION 

Now we return to the problem of a gas mixture in a closed system, that is, 
with no particles added or subtracted from the external environment, but where 

/ the numbers of the gas particles can change due to chemical reaction: 
I 

CajA,j = Cbk~k (2.22) 
3 k 

The reactant species are designated by A3 and the product species by Bk, 
and the corresponding stoichiometric coefficients of the reaction are a i  and 
bk,  respectively. These are the molecule numbers (or the mol numbers) which 
balance the equation. 

The forward ri.te of reaction (2.22) can be expressed in terms of the 
partial pressures of the reactants and the forward rate coefficient 

/u 

kf 

Rf  = k f  I I (Pj) a3' (2.23) 

. . 
I. 

i 
! @ 
. $! and the reverse rate in terms of the partial pressures of the products and the 
I 
f& reverse rate coefficient kr 

C - 
R~ = k p  I I ( P ~ )  

bk (2.24) t k 
G kr 

At equilibrium, these rates must be equal and the ratio of the forward and 
reverse rate coefficients at equilibrium is, by definition, the equilibrium 
constant 5: 

ti, &, 
4.. (2.25) ) 
*; 
h 9 

$7. 

g,' The equilibrium constant is really a function of temperature, but it is 
.Y1 called a constant to focus attention on the concept that it is independent of 

pressure or any other thermodynamic variable except temperature, at least 
s 
<. under ideal conditions. Historically, the term arose because rate experiments 
r . Liere conveniently made under constant temperature conditions. 

The rates can also be expressed in terms of concentrations c, which may 
be expressed in molecules per unit volume nlv, or mols per unit volume 1/V, 
or mass per unit volume MlV, for example. (Mols per unit volume are the 
units used here.) The equilibrium constant Kc is defined similar to the 
above : 



I For dilute or ideal gas species, o = p/,?T and the two equilibrium constants 
are then related by 

I 

i .% = (RT)'~ K, (2.2:) 

where An is the change in the number of moiecules of the system per 
i I molecular reaction: 

- 1  
, . *  

The equilibrium constants Kp and Kc are now derived in terms of the 
~. 
.-" 

partition functions of the chemical species involved in the reaction. At equi- 
i librium, the change in total chemical potential must vanish. The changes in 

different species numbers dni are related by the chemical reaction (2.22) 
according to 

dnk = - - -  
bk 

- dh (2.29) 

-? 
0- aj 
Si: 
i 

- .  where dX is a common factor of proportionality. Thus equation (2.10) 
becomes 

or, in other words, the decrease in chemical potential caused by the disappear- 
ance of the reactant species must just bzlance the increase in chemical poten- 
tial resulting from the appearance of product species: 

The chemical pctentials may be evaluated in principle from any one of the 
partial derivatives listed in equation (2.21). In practice, derivatives of 
the free energy or the free enthalpy are most convenient to evaluate. The 
free enthalpy for n particles may be expressed, . :ing the definition of 
enthalpy and equation (1.77) for entropy, as 

where the total number of particles has been left as n, rather than the con- 
stant Avagadro number, N, to call attention to the fact that this is the 



variable of differentiation and, accordingly, V is taken as the total volume 
rather than the molar volume V. Then the chemical potential per molecule is 

Note that the ideal gas assumption has not been invoked here, so the results 
above are general. However, from equation (1.81), 

so that equation (2.33) becomes 

If free energy is chosen as the starting point, exactly the same results 
follow: 

Note that Q/n is the quantity that keeps appearing in the thermodynamic 
relations for gases. Often the tacit assumption is made that this is the 
quantity meant when one speaks of the partitioq-functior, for gases. However, 
the ratio Q/n is defined here as the symbol Q: 

- 
Q = Qln  (2.38) 

as a reminder that this quantity is the partition function of the species 
divided by the number of molecules of the species contained in the gas system. 
Normally, we consider one mol of particles at a time, for which n = N .  Also, 
focusing attention on the chemical potential per molecule TT emphasi~es the 
idea that this potential is a derivative or, in other words, a ratio taken at 
the limit where the changes are vanishingly small. (The system is perturbed 
hardly at all by the addition of a single molecule.) However, in practice, 
one customarily works with the chemical potential per mole. Since the 
potential is clearly an additive quantity, this potential is simply 



REPRODUCIBILITY OF THE 
ORIGINAL PAGE IS POOR 

Whether u or iT is used in the equilibrium relations in equation (2.10) or 
(2.31) is immaterial in any case. 

The psrtition functions may be expressed as functions of V and T or of 4 p and T as desired. We now wish to relate Q to some arbitrary reference 

: level or standard state where the volume is Vo. This is easy for the very 
22. dilute gas since Q is simply proportional to V (eq. (1.59)). Then 

i 1 $ 

where Qc is the partition function at the standard state with molar volume 
. equal to Vo. In terms of concentrations c = 1/V (mols per unit vo1ume)or 

e' similar units, equation (2 -40) becomes 

c. Zn Q = Zn Q, - Zn - (2.41) 
Co 

k f where co is now a reference concentration that defines the standard state. 
F Since the ideal gas law pV = RT is obeyed for this case, equation (2.40) may 

also be expressed as 
I 

- 4 1 
f 1 and, in this case, po is a reference pressure that defines the standard state. 

d 
The concept of a standard state is introduced because the standard state par- -4 

i 
tition functions 4, and Qp can be treated as purely functions of temperature, 
and the variation of Q with concentration or pressure is accounted for in 

I 
f 

L the separable term. For dilute or ideal gases, the concentration standardized 
partition function is 'i 

a 

while the pressure standardized partition function is 

Qp = PQ 

! Substituting the chemical potentials given by equation (2.39) into (2.31) 
yields :he equil ibrium condition 1 7 

'y>. 
N ! 9 

I I -bk 
k Qk - = I n -  

RT 
(2.45) 'U -gaj 4 

J' j 
. . 

where AE is the change in zero point energy when the a mols of reactants 
form the bk mols of products: j f 

C 



In other words, Mo may be considered the heat of reaction extrapolated to 
zero temperature. In terms of' the pressure standardized partition functions - 
4&, (see eq. (2.42)), equation (2.45) becomes 

Introducing the definition of the equilibrium constant I$ (eq. (2.25)) into 
the last term of equation (2.47) yields 

Normally, the standard state pressure is taken as unity (e.g., 1 atm) so that 
equation (2.48) is often written without the dimensional term p p .  However, 
including it here reminds us that K p  is a dimensional quantity whenever An 
is different than zero. 

Similarly, the equilibrium constant Kc can be related to the concentra- 
tion standardized partition functions Qc. From equations (2.41) and (2.45) , 

Again, introducing the definition of Kc (eq. (2.26) ) into the last term of 
equation (2.49) yields ,r 

Once again, the standard condition cQ is normally taken as unity (e.g., 
1 mol/liter) so that equation (2.50) is often written without the dimension 
term e. 

Problem 2 . 4 :  Use equations ( 2 . 4 8 )  and (2.50) to verify thc rcl.ition K = ( R T ) ' ' ~ ~ ' , .  
I' 

53 



1 i 
We should mention that the equilibrium condition is often analyzed by I 

equating the chemical potential to the free enthalpy. This is indeed true for 
ideal gases, t'le case treated here. From equations (2.32) and (2.39), one can ;I 
see that for r. molar quantity of gas (n = N), 

' t: + Then the eq,~ilibrium condition requires that the summation AG should vanish 
I 

.> . - - [ ". 
i which leads to exactly the same nbsults as above. However, equation (:!.51) is 
r satisfied only for the particular \slue of reference entropy given by equa- 
l tion (1.78) (in accord with the statictical definition of entropy S = k In W), 
? and, for another choice of zero point en~?Qpy, the sum AG will no longer 

vanish if the number of product molecules is ai:ferent than the number of I 
. . I reactant molecules from which they are formed (An # C )  In fact, even with 

the zero point entropy given by equation (1.78), the Helmnzltz free energy F 
cannot generally be used as a direct replacement for the chemical potential IJ 
for constant volume processes. For a chemical reaction a: constant volume and 

I 

temperature, the sum r 

C 

vanishes only if An = 0. These difficulties are avoided, however, when the ! 
chemical potential is treated as a derivative of G or F, as it should be. 
Then the results are independent of the zero point entropy. - 

i 
Problcm 2 . 5 :  5tlo1, tl1.t: ~t 1111 ,  :L , I .O  1rc)tiit (<t1t1.01)\ I $  f t c d  11). . I  co1tst3nt .'7* d l f f c r c n t  than zero, t h a t  i s .  

2 . ' 1 . '  *;. . . '  . . 

t h e  chcmic:il potcnt  1 . 1 1  1 5  \ t  I l l  ~ t i r ~ l  I,\ t l i ~ ,  +.irti<, f i t ~ i ~ t  ltin o f  .:, 

Furthcrmorc, s h i ~ .  ttl.tt thr  \urn .'. , ( c y  i;.5'1 1 I \  t1:t.n c l ~ i i ~ r c r ~ t  ~ I , . I I I  :cro ~f ).!I I S  d i f f e r e n t  th;ln zcro,  and 
t h a t  tlle sum :,.r ( c q  (2 .5 .11  1 \ . i t 1 1  \ I I L . \  t i . t  t l i c ,  ~ , I I I I L -  C . I C C  ~ 1 1 1 1 1  ~ f '  + = -i . 

2 . 5  CONCLUDING REMARKS 

The curvature of the equi librium surface in a three-coordinate thermo- 
dynamic variable space (such .,s energy, volume, and entropy) can be deduced 
from the first and second laws of thermodynamics. From this curvature, one 
can predict maximum and minimum relations that occur at equilibrium, such as 
the fact that entropy is maximized at equilibrium in any system kept at con- 
stant volume and energy, for example. An irreversible process need not always 
lead to an increase in entropy; indeed, spontaneous processes isolated from 
external influence do lead to an entropy maximum at equilibrium, but an 



irreversible path that decreanes the entropy of a system can be arranged by 
suitable interaction with an external system. The only requirement is that 
the total entropy of both the systen of interest and the external system must 
increase. 

The equilibrium condition is given in terms of the chemical potential, 
which can be expressed in completely equivalent ways as partial derivatives of 
entropy, energy, enthalpy, free energy, or free cnthalpy. Physically, the 
chemical potential per molecule represents quantities such as the increase in 
free energy when a single molecule is added to a system at fixed temperature 
and volume, or the increase in free enthalpy when a single molecule is added 
to a system at fixed temperatare and pressure, for example. 

At equilibrium, chemically reacting species exist in the proper ratio to 
balance the forward and reverse rates of reaction, which means that the change 
in chemical potential caused by the reaction vanishes. This relation has been 
used to express the chemical equilibrium constants (i.e., the ratio of the 
forward and reverse rate coefficients) in terms of the partition functions of 
the species involved, once again illustrating that any thermodynamic property 
of a system may be deduced from these partition functions. Sometimes the 
chemical potential is equated to the Gibbs free enthalpy in such derivations, 
which leads to the same result as when the chemical potential is taken to be 
the change in free enthalpy per molecule taken at constant pressure and tem- 
perature, because of the particular choice of zero entropy required in statis- 
tical mechanics. However, the concept that the free enthalpy is the chemical 
potentia! is basically misleading. The chemical potential is expressed 
equaiiy well as the change in free energy per molecule taken at constant vol- 
vine and temperature, but the chemical potential cannot be equated to free 
energy because the incorrect result is then obtained for chemical equilibrium 
whenever the reaction causes a change in the total number of molecules. 
Fundamentally, this situation occurs because the energy involved in the prod- 
uct of pressure and volume is not accounted for in free energy whereas it is a 
part of the free enthalpy. However, these conceptual difficulties are avoid?d 
when the chemical potential is merely treated as any one of the equivalent 
partial derivatives derived from the first and second law. 
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5 CHAPTER 3 - QUANTUM PRINCIPLES AND FREE PARTICLES d 

C 

- 

3.1 SUMMARY , 'I 
%, 

. & The quantum principles that establish the energy levels and degeneracies 
nee< :d to evaluate the partition functions are explored. The uncertainty 
principle is associated with the dual wave-particle nature of the model used 

Y to describe quantized gas particles. The Schroedinger wave equation is pre- 
sented as a gcneralization of Maxwell's wave eq~ation; the former applies to 
all particles while the Maxwel: equation applies to the special case of photon 

.t 
i.' 
3 

particles. The size of the quantum cell in phase space and the representation 
:+ of momentum as a space derivative operator follow from the uncertainty prin- 
9 -- ciple. A consequence of this is that steady-state problems that are space- 

time dependent for thc clessical model become only space dependent for the 
F' quantum model and are often easier to solve. The partition ;unction is 

derived for quantized free particles and, at normal conditions, the result is 
the same as  that given by the classical phase integral The quantum correc- 
tions that occur at very low temperatures or high densities are derived. 

L These cor;ections for the Einstejn-Bose gas qualitatively describe the con- 
densation effects that occur in liquid helium, but are unimportant for most 
practical purposes otherwise. However, the corrections for the Fermi-Dirac 
gas are important because they quantitatively describe the behavior of high- 
density conduction electron gases in metals and explain the zero point energy 
and low specific heat exhibited in this case. 

3.2 INTRODUCTION 

In the preceding two chapters, all the thermodynamic properties of gases, 
including the chemical equilibrium constants, were related to the partition 
functions. We now consider some of the quantum principles that establish the 
energy levels E{ and the degeneracies gi of atoms and qolecules in gas 
phase - quantities needed to determine the partition functions. Strictly 
speaking, the energy levels are always quantized and the partition function is 
a sum ovzr these levels. However, when the spacing between levels is small 
compared with kT, the classical phase integral will prove to be a useful 
approximatjon to the partition function since the integral is often easier to 
perforni than the sum. The engineer who works on problems invalving atomic and 
molecular properties needs some insight into quntum principles, pri-arily to 

, give him the judgment to understand when classical methods can be used and 
i when quantum methods must be invoked. The uncertainty principle of quantum 

mechanics is ftlt~damencal to this question. 



3.3 UNCERTAINTY PRINCIPLE 

, The uncertainty principle can be related to the properties of the quantum 
mechalrical wave functions (refs. 1 and 2) which describe the behavior of par- 

/ ticles. These functions are just solutions to Schroedinger's equation, a 
famous equation often taken as the starting point or fundanental postulate 
(ref. 3) of quantum mechanics. ttowever, we are apt to be staggered by the 
leap of intuition that. would instantly postulate a complete second-order par- 
tial differential equstion as the starting point for a descriptian of the 
physical universe if wf- are not aware that Schroedinger discovered his equa- 
tion by making sone relatively simple modifications of the Hamilton-Jacobi -- equations that gave-. the motion of particles under the constraint of least 
action. Schroedinger's genius permitte;: him to realize that the time coordi- 
nate could profirably be treated as an imaginary variable; the Schroedinger 
equation was the result. Although this was the historical process of dis-. 
covery, with hindsight, we can use a sAmple analogy to Maxwell's electromag- 
netic wave equations (ref. 4) that makes Schroedinger's result very n!ausible, 
particularly to engineers since they are so familiar with Maxwell's equatiotjs 
and their exceedingly successful applications in electrical engineering. 

Experimentally, the fact has been repeatedly established (first by 
Davisson and Gerner for electrons, e. g. , see ref. 1) that moving particles 
possess the characteristics of waves. DeRroglie postulated that all particles 
behave something like photons (refs. 2 and 5) which are "wave particles" known to 
have a momentum p equal to thcir energy hv divided by their velocity c :  

where h is the Planck constant, v  is the frequency and X is the wave- 
length. Furthermore, photons are known to obey Maxwell's equation 

1 a 2 y  c.'y = - - 
~2 at* 

where Y is the amplitude of :hc photon wave. By analogy, other particles 
can be expected to obey the siime equation but with a different velocity bf 
?ropagation, namely, h v l p  or vX: 

A steady state, 01 standing wave, is rormcd when thc space and time 
dependence are separable: 

The product Y is then indepcniicnt of t, corrccponding to thc standing 
wave. The spatial ly Lcpcndcnt part of thc wiivc function ohcys the  



differential equation: 

The momentum squared, p2, may be replaced with its equivalent 2m(E - U), where 
E is the total energy, U is the potential, and m is the particle mass. 
Then 

which is the usual time-independent Schroedinger equation. 

In Maxwell's equation, J,2 is interpreted as a factor proportional to the 
energy density of the ..lave (such as the square of the electric vector E* or 
of the magnetic vector ni) (ref. 4), which is proportional to the photon 
density. In the Schroedinger equation, $2 is interpreted as a probability 
(refs. 3 and 5), which is also proportional to particle density. For example, 
the probability that the particle will be in the volume element d~ is 
defined as 

where $$I)* d~ is a definite integral over all values of the coordinates 
involved and represents a normalization constant. 

The uncertainty principle may be demonstrated from the wave function 
describing a free partic'? (i.e., a particle with constant momentum). If such 
a particle is moving in the x direction with momentum po, a solution to 
equation (3.5) is 

where the wave number ko is 2a/A0 or 2.rrpo/h. According to equation (3.4), 
the total time-dependent wave function may be expressed as 

where xo is pot/m. This function represents a ?lane wave traveling in the 
x directio~ with velocity po/m. However, it seems impossible to relinqcish 
the idea that the object still retains some characteristics of a particle; 
that is, it should be localized in space. For example, if the probability is 
unity that the particle is somewhere in the interval Ax abou. x c ,  then 



Thus t h e  amplitude must vanish (C = 0) i f  t h e  p a r t i c l e  i s  no t  l o c a l i z e d  
(Ax = m). For Ax f i n i t e ,  a  spectrum o f  wave numbers e x i s t s  which i s  given 
by a Four ie r  a n a l y s i s  o f  t h e  l o c a l i z e d  wave packet .  The wave func t ion  may b e  
expressed a s  t h e  Four ie r  i n t e g r a l :  

4  (k) eikt dk 

where t h e  v a r i a b l e  x now s i g n i f i e s  t h e  d i s t a n c e  (x  - xo) and $(k) is t h e  
amplitude o f  t h e  wave number spectrum: 

Thus, f o r  t h e  t runca ted  wave packet ,  

The i n t e n s i t y  o f  t h e  packet  i n  t h e  b!ave number i n t e r v a l  dk about k  is  
4* (k) : 

I f  t h e  e f f e c t i v e  width o f  t h e  packct  i n  k s ace  i s  def ined a s  t h e  width o f  a  
square  pu l se  Ak with t h e  maximum he igh t  4; ( i . e . ,  A2/2n) which h a s  t h e  
same i n t e g r a t e d  i n t e n s i t y  a s  given by equat ion (3.14),  then 

The wave number k i s  j u s t  2aplh and Ak is  IT Ap/h .  Thus, , . - . 

t h e  f s m i l i a r  r e l a t i o n  f o r  t h e  s i z e  o f  a  quant ized c e l l  i n  momentum-position 
space ,  which was used i n  chap te r  1 t o  make t h e  c l a s s i c a l  phase i n t e g r a l  dimen- 
sionles; .  Of course,  t h e  d e f i n i t i o n  of t h e  e f f e c t i v e  width o f  a  nonrectangu- 
l a r  pu l se  i s  somewhat a r b i t r a r y ,  but  any reasonablc  d e f i n i t i o n  l eads  t o  a 
r e l a t i o n  s i m i l a r  t o  equat ion (3.16), where t h e  product o f  t h e  u n c e r t a i n t y  i n  
molnentilm and p o s i t i o n  is  t h e  o r d e r  o f  P lanck l s  cons tan t .  Th i s  i s  a  genera l  
r e s u l t  f 9 r  any wave packet  kaving a slnoothly varying p u l s e  shape. 

Problem 3.1: Show that the fnllowin[; norm:tl.-ed wave p:~ckct with n Gaussian envelope 

where n IS thc :t,li.(i3rd ~ C V I ; L ~ I O I ~  e f  thc [ir~h~hlllt). v q 4 ,  leads to .? Gaussian distrihutlon in the intensity of 
the have nunher spcctr:lm. ~ i ~ r t h c m o r ~ ,  \hnh th:~t the same rclat~on as equation (3.16) is obta~ned if the effec- 
tive p ~ ~ l s e  h ~ d t h s  arc deflncd .I.; .'v- times the qt,ind.~rd dcriations of thr Ca~~.;si?n d i s t r ~ h u t ~ o n s  for q2  and $ 2 .  



.. .? 

Our purpose here is not to refine the mathematical description of the . . 

uncertainty principle, but to emphasize that the principle comes about in a . - 
natural way as a consequence of trying to impose a dual nature on the 
"particle wave." One might consider discarding both the wave and particle 
model and attempt to construct an atomic theory that permits exact determina- i f 

I tion of all quantities appearing in it. Rice and Teller (ref. 6) point out r .., 
that even though this might be possible in principle, since the mathematics of 

6 

quantum mechanics is complete and free from contradictions, the theory would 
start from concepts having no immediate equivalent in everydzy experience and j : 
one would run into all the difficulties in explaining the meaning of such an 1 i i 
abstract theory that were avoided in formulating it. In addition, such a i 6 

theory would doubtless fail to emphasize an inportant part of quantum mechan- 
.- ics known as the correspondence principle - that for certain limiting cases 1 . , I '  " 

the laws of quantum theory converge on the laws of classical mechanics. I. 

A distinction should be made between quantum transitions and classical 
processes. The quantum transition takes place between two different states 
with different physical properties. The classical process is associated with 
only one set of physical conditions and thus describes the situatim when the 
change in physical properties between the initial and final states is negli- 
gibly small. Often this is the case in the limit of very high quantum numbers. 
In gases, the change in internal energy p~oduced by collision must be small 
compared with the average energy per molecule, generally the order of k;, for 
classical methods to apply. The laws of quantum mechanics are a finished 
formalism, but the correspondence principle is useful in addition to its value 
as a limiting case because it helps to visualize and understand laws that are 
otherwise predominantly mathematical formalisms. Finally, Rice and Teller 
(ref. 6) conclude that any attempt to divsrce quantum theory from the classi- 
cel picture of particles and waves would destroy the ,ignificance of tne 
correspondence principle and thus lead into a field where one is not allowed 
to use words that are used to express our everyday thinking and experience. 
They do not believe that a theory is possible which in its final analysis is 
not based on these words and therefore on classical physics and common sense. 
Bridgman (ref. 7) often expressed similar ideas. 

3ne important consequence of the uncertainty principle is that a dynamic, 
steady-state process analyzed in terms of both space and time coordinates in 
classical mechanics can be transformed into a purely space-dependent problem 
in quantum mechanics. The latter is often easier to solve because the time 
panmeter is missing since the time dependence is associated with the momentum 
coordinates of the system, which are represented in quantum mechanics by 
purely space-depende~t derivative operators. To develop this relation (ref. 1), 
consider the Fourier integral representations of the wave function Q(x) and 
the wave number amplitude function + ( k )  of a particle constrained to one- 
dimensional linear motion along the x coordinate, equations (3.11) and 
(3.12), respectively. The momentum of the particle is fik and the average 
value of momentum is given by 



P 
Subs t i tu t ing  t he  Fourier i n t eg ra l  of  equation (3.12) f o r  4* and 4 i n  

I- . !$ 
L. 

equation (3.17a), one obtains  

7 ' i - I :  where xt and x a r e  two d i f f e r en t  var iab les  o f  in tegra t ion .  The f a c t o r  
: 

k e-ikr can be expressed a s  t h e  der iva t ive  
i 

I 

and equation (3.17b) then becomes 

Interchange the  order  of  in tegra t ion  and i n t e g r a t e  f i r s t  over x ;  i n t e g r a t e  by 
p a r t s  and use t h e  f a c t  t h a t  t h e  wave function vanishes a t  t h e  limits, ,. 
+(+a) = 0. Then 

According t o  t h e  Fourier i n t eg ra l  theorem ( r e f s .  1 and 8), $*(x) is j u s t  t h e  
inner  bracket o f  equation (3.17d) : 

This theorem may be derived by subs t i t u t i ng  equation (3.12) f o r  $(k' i n  
equation (3.11) and changing the  r e s u l t  t o  t h e  complex conjugate. T' *qua- 
t ion (3.17d) becomes 

an expression fo r  the  average value o f  momentum i n  terms o f  $* and t h e  
der iva t ive  of  . A t  any point  x, t he  integrand is  j u s t  t he  product o f  t h e  
momentur,~ p a t  t h a t  point  and t h e  probabi l i ty  t h a t  t h e  p a r t i c l e  is  observed 
a t  t h a t  point ,  $$*. Thus the  momentum a s  a function o f  t he  pos i t ion  
coordinate is  



I t  i s  i n  t h i s  sense t h a t  the  momentum is  t o  be replaced by a der iva t ive  
operator whenever it appears i n  any observable quant i ty  t o  be evaluated from 
the  wave function. The y and a components of momentum i n  Cartesian coordi- 
na tes  a r e ,  o f  course,  represented by the  corresponding der iva t ives  with 
respect t o  y and a: 

The operator  f o r  a component of momentum squared is  obtained by two successive 
appl icat ions of  the  s ingle-derivat ive operator.  The operator  o f  most i n t e r e s t  
here is the  t o t a l  energy o r  t he  Hamiltonian. For a s ing le  p a r t i c l e ,  t h i s  
operator is ju s t  

Note t h a t  the corresponding operators  f o r  t he  space coordinates x, y ,  
and z a r e  jus t  the  coordinates themselves. The po ten t i a l  V may be 
expressed i n  any coordinate system other  than Cartesian, of course, a f t e r  
which the  Laplacian operator  v2 i s  taken t o  be the  appropriate  operator  i n  
t h a t  coordinate system a lso .  Frequently, these operators a r e  expressed i n  
terms of  dimensionless coordinates t h a t  absorb a l l  constants.  Typically,  d i s -  
tances a r e  given i n  u n i t s  of the  Bohr radius a*, and energy i n  u n i t s  of  
h2/2mao2, i n  which case the  k ine t i c  energy operator  becomes simply -v2/2. 

One can see  from the  reciprocal  Fourier transform re la t ions  between the  
:iave function $(x) and the  wave number amplitude $(k) (eqs. ( 3 .  il) and 
(3.12)) t h a t  problems could be worked in  momentum space o r  wave number space 
equally as  well a s  i n  positior,  coordinate space. Then the  probabi l i ty  of the  
p a r t i c l e  having a wave number k i s  j u s t  $*$, and a l l  the  observables of the  
system a r e  appropriately weighted with t h i s  probabi l i ty  fac tor .  The Cartesian 
dis tance coordinate x becomes id slap., i n  t h i s  system. 

Problem 3.2: Use Fourier transform rcl-tions to show that the average value o f  r may be found in terms of 
wave-number amplitude functions as 

and that the value of r for a given momentum :- is 

where $(p)  = h - 1 ' 2 +  . . the normalized momentum amplitude wave function. Thus, in momentum space, z, y, and z 
arc replaced hy the c cators 



$ whenever they appear in any observable quantity to be evaluated from the momentum amplitude functions. i 
? f 

Quantum problems a r e  usual ly worked i n  coordinate space r a t h e r  than 
momentum space because the  po ten t i a l  energy function: of  i n t e r e s t  a r e  usual ly 
functions of  coordinates only. Thus a much simpler operator  r e s u l t s  i n  coordi- 
na t e  space (where t h s  coordinate operators a r e  t he  coordinates themse1ves)than 
i n  momentun space where some very complex der iva t ive  operators  would r e s u l t .  
Note a l so  t h a t  the  s ign convention on the  der iva t ive  operators  is  a r b i t r a r y ,  
provided only t h a t  the  momentum operator  i n  coordinate space and the  coordi- 
na te  operator i n  momentum space have opposite signs.  For example, the  Fourier 
transform re l a t ions  i n  equations (3.11) and (3,12) could be expressed equally 
well with t he  exponential f ac to r s  ezk=c and e - z h  interchanged. Then one 
would obtain the  momentum operator  ih alax f o r  pT and the  coordinate oper- 
a t o r  -i& slap, f o r  x, r a t h e r  than the  r e l a t i o n s  given i n  equations (3.21) 
and (3.23). 

To t r a n s l a t e  these ideas i n t o  a physical s i t u a t i o n ,  consider t he  steady- 
s t a t e  wave function of  a s ing le  p a r t i c l e  moving i n  t he  x d i r ec t ion ,  i n  a 
region of  space where the  poten t ia l  is a constant Vo. The momentum i n  t h e  x 
d i rec t ion  i s  then given by 

Several solut ions t o  t he  Sch-oedinger equation (3.6) a r e  possible ,  depending 
on the  boundary conditions.  One such solut ion is 

I f  we operate on t h i s  function with the  momentum operator and then divide by 
the  wavc function as  i n  equation (3.20) , 

we obtain the probable momentum of the  wave, the  constant p,. Thus the  wave 
function in equation (3.25) i s  s a id  t o  represent a plane wave t rave l ing  with a r :  
constant momentum p,, i n  the  posi t ;ve x d i r ec t ion  i f  po is  pos i t i ve  and 
i n  the  negative x d i rec t ion  i f  po i s  negative. ( I f  we had chosen the  b 

opposite s ign convention, where tne momentum operator i s  ifi alax ,  then equa- , 

t i on  (3.25) would merely r ~ p r e s e n t  waves t rave l ing  i n  t he  opposite directions.)  
Note t h a t ,  while the momentum is f ixed,  t he  probabi l i ty  of locat ing the  par- 
t i c l e  i s  everywhere equal so the  locat ion I s  completely indeterminate i n  
accord with the uncertainty pr inc ip le .  In f a c t ,  f o r  a s ing le  p a r t i c l e ,  the  
constant C must be zero (as  discussed r e l a t i v e  t o  eq. (3 .10))  in order  t o  
normalize the probabi l i ty  t o  uni ty.  More typ ica l ly ,  we deal with a d i rec ted  i 

beam of almost f r ee  p a r t i c l e s ,  where the  constant C can be normalized t o  the  
known current  density 



?; where the constant E is the total energy and the potential V and amplitude 
C are both functions of x. If V is relatively constant over a region 

C 

? large compared with the wavelength, h[2m(~ - V)]'1'2 (which corresponds to 
classical behavior of the particle), the solution to the Schroedinger equation 
has the same form as equation (3.25) with nearly constant C and with po 

%. representing the slowly varying quantity [2m(E - V) 1 Any arbitrary poten- 
tial function can be approximated by a series of step functions, each giving a 
solution for the wave function of the 
form of equation (3.25). These solu- 
tions may be interfaced with one 
another by matching the magnitude and 
the first derivative of the wave func- 
tion at each interface to give an 
approximation to the true wave function. 
Matching the wave functions conserves 
the probable llumber density at that 
point and makes number density a con- 
tinuous function; matching the deriva- 
tives conserves the probable momentum 
at that point and makes momentum a con- 
tinuous function. In this manner, the 
character of the wave function for any 
arbitrary potential can be physically 
assessed, even though the analytic 
expression for that function may be 
complex. For example, figure 3.1 shows XI Xo X z  

the form of tbs wave function for a OISTANCE 

beam of free particles crossing a poten- Figure 3.1.- Wave function for a beam 
tial hump of some sort. Only the real of free particles crossing a 
part of JI is shown, but an imaginary potential hump; 
part 90' out of phase with the real 
part can be visualized out of the plane $ - Re[C i [2m (E- V )  1 12x/h t 

j . \:, I 
I * LU .- - I. i . ,/& ; 
I .,'> , , ,. '1) 

. - '. .*.. -. -I" _... - - - r  <' 
- - 

c2p*z 
JI*$ & = - m m .. 

% 

where j is the number flux per unit area, p /m is the beam velocity, and 
1 / 

2' is the unit of length. Thus c2 has the Simensions of panicle number per 
unit volume in this case. Sometimes the integration over the beam cross- 
sectional area that gives the total current is used, in which case the normali- 
zation constant squared has the dimensions of particles per unit length of 
beam. 

r+.\ . . 
$& 
6% r : 

Generzlly, the momentum is not a constant, of course, but changes with g the potential of the region in which the particle moves. Again, if the par- 
$: * 

# p, ticle is restricted to one-dimensional motion for simplicity, the wave function 
I 

F. has the form 



of the figure. Up to point xl, JI .,. : 
has a constant amplitude and wave- 
length characteristic of the com- 1 
pletely free beam. At XI, the S 
wavelength and the amplitude both --i 

i increase as the beam loses momentum 
9 

and bunches up over the potential r I 
$., I' 

hump. At the potential maximum, the j 4 '  wavelength and amplitude decrease i 1  
again until they return to their i 

original value at 2 .  In the step a 
function approximation, C  and V are t 

v ( 

piecewise constpnt, and the result ;i 
i: cf operating on the wave function ,". 

with the momentum operator and 
dividing by the wave function is a 
real quantity, corresponding to the 
fact that the momentum of the beam c .. .- 
is everywhere observable: 

xo 
DISTANCE 

Figure 3.2. - Wave function for a bound 
.- particle in steady state in a In many situations, the wave 

potential we1 1 : function is needed for particles 
x<xl, J I - C  e  

[2m (V-Z) ] I 2x/fi that are bound and move about in 
some sort of potential well. Even 

xl < < x2, - [2m(E-V) 1 112x/h in a gas where the particles are 
- [2m(V-E) 1 I2x/k x2<xr $ - C e  relatively free, the particles are 

eventually bound by the walls of the ( 

container, for example. The particle then reflects from the region where 
V-E becomes positive, as illustrated in figure 3.2, again for one- 
dimensional motion. In this case the reflected wave is added to the trans- 
mitted wave, which in steady state sets up a standing wave. Again, for the 
slowly varying potential case, the wave function has the character of cosine i 
or sine waves if E > 1': 

but decreases as an exponential in the regicn where V > E: 

+ [ z m f  V-E) 1 1'2x/h $ - C e -  

The negative exponent must be used if x increases arld the positive exponent 
if x decreases. Otherwise, the wave function becomes infinite at the bound- 
aries (a: + &-) and the probability everywhere vanishes (i.e., C = 0). In 
figure 3.2, a standigg wave is depicted between xl and 22 with small 



amplitude and short wavelength near the potential minimum, where the particle 
._. has the largest velocity and the least probability of being located, and with 

largz amplitude and long wavelength near the classical turning points X I  and 
x2,  where the particle has the least velocity and the largest probability of 

'I 
I 

being located. Outside the region X I  to 32, the wave function is nonoscil- ... 
lating and has an exponentially decreasing amplitude. 

h : 
R .  Note that the momentum operator leads to an imaginary quantity with such 

k? %; 
a function. For example, if E > if and J, - cos kx, 

I 

- - - =  " a' -i6k cos kx sin kx 
'4' ax 

4- ' 
C- y - k ~  

l while, if E < V and + - e , --. 

This corresponds to the fact that momentum is unobservable in this system; 
that is, one cannot tell whether the bound particle in steady state is 

3 approaching the potential barrier or receding from it. However, note that 
i kinetic energy and probability both have finite real values in the region 
f V > E. The skin depth where the probability is appreciable in this region is 

very thin if V >> E, of course. 

A system of gas particles in a box is modelled well by assuming that the 
box is potential free and that the walls are a sudden discontinuous potential 
rise to +=. Then the wave functions for such particles are precisely the 
sine and cosine waves that match these boundary conditions; only in the region 
of the wall, where the barrier is not truly discontinuous, would these wave 
functions be somewhat imprecise. Gas particles move in three dimensions, of 
course, but usually in relatively potential free space, in which case the 
three-dimensional wave function can be simply expressed as a product of one- 
dimensional wave functions of the type discussed above: 

In many cases of interest, particles are bound in a potential well, with 
boundary conditions best described in spherical, or sometimes cylindrical, 
coordinates. In these coordinate systems, the momentrim operators are no 
longer simple first derivatives, as in equation (5 .21) ,  but must be con- 
structed so that the value of an observable quantity given by the operator is 
a real quantity. A number is purely real if, and only if, it equals its com- 
plex conjugate. - Thus the operator 6 which corrcsponds to an average observ- 
able quantity 0 must satisfy the relation 



' 1  
A class of operators called Hermitian have this property. Actually, Hemitian 

I 
-. , operators may have yet more general properties with respect to an entire class .- - of functions. These properties are discussed briefly in appendix 3-A, along 

with some comments on wave functions that have spherical or cylindrical synrme- 
try, so that the reader may refresh his knowledge in thesc b?slc quantum 
topics. 

i 
1 

3.4 QUANTIZED FREE PARTICLES 

A particle moving in potential free space (V = 0) with momentum = kli 
has a wave function that obeys 

The solution is determined by the boundary conditions, of course. If boundary 
conditions consistent with a plane wave are assigned, a traveling wave $01~- 
tion in three dimensioqs takes the form 

+ 
where k and F are now vector quantities giving the wave number and position 
in three orthogonal coordinate directions. The steady-state, standing wave 
function that fits the given boundary conditions is formed from a linear supep 

'1 

position of the traveling wave solutions above; these are expressible as prod- 
ucts of cosine or sine factors, for example, 

where the subscripts 1, 2, and 3 represent vector components in the x ,  y, and 
z directions, respectively. Consistent with the choice of the pla,~e-wave 
solution, a boxlike volume with sides A1, h2, and A3 is imposed as the 
boundary. (Different boundary conditions are required for a differently 
shaped standing wave.) The standing wave must return to its original value 
after a distance 2hi (on? complete traverse of the Sox in both directions); 
therefore, 

41rpixi 
2kihi = -- = 

h 2nni (3.35) 

where ni may be any integer from 0 to m and is a quantum number that repre- 
sents the steady-state translational wave function of a particle, The energy 
of the particle in steady state is thus 

The usual procedure at this point is to combine all energies lying within 
a range de and compute how many different combinations of the ni give this 
same energy; this number i.s the degeneracy g. We can equally well cbunt each 



state separately with unit degeneracy. The partition function for the 
translational motion is then (see ch. 1) 

:- * 
'r I i , '  

t: , 

I +;- where a i 2  is h 2 / & n k ~ ~ i 2 .  Because ai is normally very small compared with a i .p  unity, the sums may be approximated with an integral 

where V is the potential free volume available to the particle. We state 
without proof that the same result as equation (3.37b) would be found for an 
arbitrarily shaped volume if the appropriate standing wave function for that 
shape were used (ref. 2). 

-k Problem 3.3: Show t h a t  f o r  a gas  o f  H2 molecules a t  n o n a l  temperature  and d e n s i t y ,  and with s c a t t e r i n g  
c r o s s  s e c t i o n s  t h e  o r d e r  of 10 - l5  cm2, a? i s  t h e  o r d e r  o f  Thus. t h e  i n t e g r a l  i n  equa t ion  (3.3R) i s  a good 
approximation f o r  t h e  sums involved i n  t k e  p a r t i t i o n  func t ion .  Note t h a t  t h e  approximation improves a s  d e n s i t y  
and s c a t t e r i n g  c r o s s  s e c t i o n  dec rease  and temperature  and molecul3r weight i nc rease .  

3.5 CLASSICAL FREE PARTICLES 

The spacing between energy levels of a free particle is ~ ~ r m a l l y  small 
compared with kT, at least for moderate values of the quantum number n: 

In such cases, one expects the correspondence principle to apply and the 
classical and quantum results should be the same. The classical partition 
function for the free particle is 

The Hamiltonian expressiun for the energy of a free particle is 



- ti., k L.L .. . 
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Performing the integrations over XI, x2 ,  and x3 yields the free volume V 
over which the Hamiltonian is given by equation (3.41). Thus 

the same result obtained by the quantum arguments, equation (3.37b). 

3.6 THERMODYNAMIC PROPERTIES OF INERT GASES COMPOSED OF CLASSICAL PARTICLES 

For gas particles with no internal degrees of freedom, Q / N ,  from 
equation (3.42), is 

The energy is then 

and the specific heat at constant volume 

The entropy becomes 

and the free energy is given by 

The pressure is 

the familiar ideal gas law. The enthalpy H and free enthalpy C are simply 
evaluated by adding pV t o  equation (3.44) and (3.47), respectively. 



C 
! So far, the gas has been treated as a collection of independent particles. 

This model is a good approximation for dilute gases where the particles have 
negligible interaction except during collisions, which occupy only a small 
fraction of time. The above results are later modified to account for disper- / 
sion forces in very dense gases (ch. 8). Even in the dilute gas phase, how- 
ever, collections of electrons and photons are found to obey somewhat differ- 
ent statistics than the Maxwell-Boltzmann statistics used ihus far. The 
differences introduced by quantum statistics are corsidered next. 

3 . 7  THERMODYNAMIC PROPERTIES OF INERT GASES COMPOSED OF QUANTUM PARTICLES 

The thermodynamic properties of gases composed of quantized gas particles 
are slightly different than the properties deduced for a gas of Maxwell- 
Boltzmann particles hecause the statistical distribctions are different. The 
deviation from the Maxwell-Boltzmann distribution is called degeneration (when 
used in this sense, the term has no connection with the concept of a degener- 
ate energy level). The normalization parameter a is an index of this degen- 
eration. One readily sees that if a is very large, both the Einstein-Bose 
and Fermi-Dirac distributions bec~me Maxwell-Boltzmann as the factor 2 1  is 
negligible compared with e"BEi. In this state, ni << g i  and the degenerate 
energy levels ai-e not filled, which means that the state is one of high dilu- 
tion and high energy. The smaller the value of a, the larger will be the 
effect of degeneration. The minimun value a can have is zero for the 
Einstein-Bose gas since negative n; is meaningless, while a can go as far 
as -oo for the Fcrmi-Dirac gas. 

Before investigating quantum effects on thermodynamic properties of gases, 
we derive general formulas for the kiiretic energy and pressure of weakly inter- 
acting quantized particles without internal energy. At any given instant, 
each particle is in one of the available steady-state cigenvalues given by 
equation (3.36). Consider the special case of a cubical box with equal sides 
XI = h 2  = X 3  = v1l3. The energy of n noninteracting particles in this box 
is 

A fundamental theorem of quantum r.cchanics states that reversible adiabatic 
variations of external ~3ramtters dq 7 : r . I  change thc q~l:intum :!ismhers. In prac- 
tical terms, this means that if t h ~  ,>?rturbations are small cnaugh, the quan- 
tum states are perturbed so little that thc summation of squared quantum 
numbers in equatim (3.49) is essentially constant. In this limit, then 

The same result occurs for any ~rl~~trarily shaped volume (scc ref. 11, and thc 
result is also the samc as for classical ideal gases in rcvcrsiblc adiabatic 
change of state, 



since y ,  the  r a t i o  of spec i f i c  heats ,  i s  j u s t  5/3 f o r  a  gas of monatomic 
p a r t i c l e s  considered here.  

A completely general r e l a t i on  for  pressure follows fro.  equations (1.9) 
and (3.50): 

This r e l a t i cn  i s  useful l a t e r  i n  obtaining the equation of s t a t e  f o r  
degenerate gases. 

Define a  vector magnitude squared vS a s  the  sun of a l l  sou..:ed quantum 
numbers : 

 the^ the  number of s t a t e s  with energy E o r  l e s s  i s  j u s t  the number of 
l a t t i c e  points  i n  a  volume 1/8 the volume a sphere of radius v, o r  nv3/6 
( i . e . ,  j u s t  the volume of the spherical  quadrant in  wh~ch a l l  quantum numbers 
a r e  pos i t ive) .  From equation (3.49) and (3.52) ,  one obtains a s  the t o t a l  
number of quantum s t a t e s  with energy l e s s  than E :  

where the r e s u l t  i s  multiplied by (28 + 1) t o  account f o r  t he  degeneracy of 
spin s t a t e s  accurring when the gas p a r t i c l e s  h a v ~  spin quantum number s (see 
ch. 4 j .  The degeneracy of s t a t e s  with energy leve ls  between T and E + dE i s  
thus 

Problem 3 . 4 :  Show t h a t  t h e  t o t a l  numher o f  dcjiener:~tc s t a t e 5  a v : ~ ~ l a h l r  t o  gas  p a r t i c l e s  o f  normal mass and 
temperature i s  t h e  order  o f  l o z 4  per  c q 3  SO t h a t ,  a t  normal gas d c n 5 i t i e s ,  o n l y  a  f r a c t i o n  o f  t h e  degenerate  
s t a t e s  i s  occupied.  

Fi r s t  consider the case of ncgl igiblc  dcqencration. The fac tor  e-" i s  
given by normalization t o  the  t o t a l  number of p a r t i c l e s  n as  

where the variable  o f  intc,:at ion s = 6 / k ? ' .  T h u s  



is  t h e  degeneration f a c t o r  obta ined when t h e  quant ized p a r t i c l e s  obey Maxwell- 
Boltzmann s t a t i s t i c s .  I f  t h i s  value  o f  e-a is s u b s t i t c t e d  i n  t h e  d i s t r i b u -  
t i o n  funct ion,  t h e  usual  Maxwell v e l o c i t y  d i s t r i b u t i o n  law o f  k i n e t i c  theory  
is obta ined.  The dimensionless quanti:! on t h e  r ight-hand s i d e  i n  equa- 
t i o n  (3.56) is def ined as y ,  f o r  ease  i n  formulating t h e  expansions t h a t  
follow, and it is  a very small q u a n t i t y  f o r  usual  values  o f  m, T, and V/vz. 

Next consider  t h e  Einstein-Bose gas .  The degeneracy f a c t o r  g is  t h e  
same a s  given by equat io+.  (3.54), but  t h e  d i s t r i b u t i o n  func t ion  now has  a 
d i f f e r e n t  form: 

Digress f o r  a moment t o  examine t h e  i n t e g r a l s  

Thc values of r of  i n t e r e s t  a r e  1/2 and 3/2. ~ x p a n d  t h e  i n t e g ~ a n d  i n  
equation (3.58) a s  

Then 

Note t h a t  t h e  s e r i e s  converges f o r  a11 a L 0. The value o f  y given by 
equation (3.57) can thus  be expressed as  t h e  s e r i e s  

T! q u a n t l t y  may be obta ined by success ive  approximation. The 
f i r s t  approximation i s  

e - a  = Y (3.62a) 



. . which gives just the Maxwell-Boltzmann law. Substituting this value of e-c 
in all but the first term of the series in equation (3.61) yields a second 

4 approximation to terns of order y2 : 

Similarly, substituting the second approximation in all but the first term of - i 
the series yields a third approximation to tens of order y3: 

The process can easily by continued to higher-order terms, but the third 
approximation is sufficiently precise for most applications. 

Now calculate the energy and pressure for the Einstein-Bose gas: 

The ratio U(a,3/2)/U(a,?/2) corrects the classical energy to account for the 
effects of degeneratj on. 

The pressure is obtained from equation (3.51) as 

so the same ratio corrects the classical pressure for effects of degeneration. 
i 

Consider weak degeneration where the third approximation is sufficient 

-a then, if we s!~bstitute for e . :;lc correction factor becomes 
2 



For Hp a t  s t andard  cond i t ions ,  y = l r 5 ,  s o  both  energy and p r e s s u r e  
t a k e  t h e i r  c l a s s i c a l  values .  For o t h e r  gases ,  t h e  va lue  o f  y is  even 
smal le r  because o f  t h e  l a r g e r  mass involved.  Only a t  very  low temperatures  
w i l l  s t r o n g  degenerat ion occur.  To s e e  how low t h e s e  temperatures must be ,  
cons ide r  t h e  minimum value  o f  a t h a t  can occur  f o r  an Einstein-Bose gas,  
namely, a = 0. Then t h e  s e r i e s  express ion f o r  y converges t o  a f i n i t e  l i m i t  

and t h e  temperature a t  t h i s  * i m i t  is 

( c a l l e d  t h e  c r i t i c a l  temperature) .  One might conclude t h a t  lower temperatures  
a r e  no t  p o s s i b l e  f o r  an Einstein-Bose gas  s i n c e  a c a ~ l n o t  be  l e s s  than  zero 
i n  t h i s  case .  However, t h i s  conclusion is  no t  c o r r e c t ;  t h e  va lue  of n is 
a c t u a l l y  given by a summation r a t h e r  than t h e  i n t e g r a l ,  and t h e  summation 
terms have p a s i t i v e  va lues  f o r  ni f o r  a l l  T even when a = 0. A t  tempera- 
t u r e s  below c r i t i c a l ,  an i n c e a s i n g  number o f  molecules a r e  found i n  t h e  
ground s t a t e  u n t i l ,  f i n a l l y ,  a t  T = 0 a l l  molecules a r e  i n  t h e  ground s t a t e .  
On co!;lpression o r  expansion a t  constant  T below cr  i i c a l ,  p r e s s u r e  does not  
vary  and t h e  gas  behaves l i k e  a two-phase system, a behavior  c a l l e d  "condensa- 
t ion"  o f  t h e  Einstein-Bose gas.  

~e~ is  t h e  on ly  molecule t h a t  provides  a p e r c e p t i b l e  va lue  o f  To, and 
ever1 i n  t h i s  case  t h e  gas l i q u i f i e s  -t 4' K ,  be fo re  t h e  c r i t i c a l  p ~ i n t  i s  
reached, and t h e  assumption t h a t  t h e  system i s  composed o f  weakly i n t e r a c t i n g  
p a r t i c l e s  i s  no longer  v a l i d .  The c r i t i c a l  temperature given by equa- 
t i o n  (3.67) with t h e  l i q u i d  He mol volume equal t o  27.6 cc  is To = 3.13' K ,  
q u a n t i t a t i v e l y  somewhat d i f f e r e n t  than t h e  observed X po in t  o f  l i q u i d  He, 
2.19' K.  (The p r o p e r t i e s  o f  l i q u i d  He d r a s t i c a l l y  change a t  t h e  h p o i n t .  
For example, He1 condenses t o  He11 below t h e  h poin t  and i s  then observed t o  
have n e a r l y  zera v i s c o s i t y ,  zero s u r f a c e  t e n s i o n ,  and f a n t a s t i c a l l y  h igh 
thermal conduc t iv i ty  - hundreds o i  t imes t h e  value  o f  Cu and thousands o f  
t imes l a r g e r  than HeI). Nevertheless,  t h e  condensation e f f e c t  p r e d i c t e a  f o r  a 
gas o f  weakly i n t e r a c t i n g  bosocs does q u a l i t a t i v e l y  d e s c r i b e  many o f  t h e  
observed f e a t u r e s  o f  He11 t h e  sim:>le moael descr ibed needs t o  be c o r r e c t e d  
p r imar i ly  f o r  p e r t u r b a t i o n  e f f e c t s  o f  nearby neighbors i n  t h e  l i q u i d  phase. 

In a p r a c t i c a l  sense ,  a s i d e  from understanding t h e  behavior  o f  HeII ,  t h e  
quantum model o f  a boson gas i s  not  very u s e f u l .  However, t h e  quantum model 
of a gas composed o f  fermions, which obey Fermi-Dirac s t a t ; , , t i c s ,  i s  exceed- 
i n g l y  use fu l  because e l e c t r o n s  f r e e  t o  move i n  space o r  i n  a c r y s t a l  l a t t i c e  
o f  conducting inater ia l  comgrise such a gas .  In t h i s  case ,  t h e  mathematical 
model develops e x a c t l y  t h e  same a s  f o r  t h e  boson except t h a t  t h e  nega t ive  s i g n  
i n  t h e  denominhtor o f  t h e  : ~ t e g r a n d  becomes a p l u s :  



For this case, examine the integrals 

for the range of a from -ooto +w.  Consider first a > O and, subsequently, 
a < C. 

For a > 0, expanding the integrand as before one obtains 

which, by successive approximation, leads to a formula similar to the boson 
gas case: 

For a < 0, the series above diverges. Sommerfeld (ref. 9) developed a 
series in inverse powers of a which converges only for a < -1 (see also the 
review of degenerate gas relations -n ref. 10). To terms of second order, 
this series is I 

n2 P ( P  + 1) + , 
V(a,r) = & [ , + -  I'(r + 2) (3.71) 

6 a2 

which can be used when a << -1. Thus, 

and 

Again, by use of sutcessive approximation, we obtain for a first approximation I 
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and, f o r  a second approximation, 

21 3 r 
- (9-) p - ? ( L T / ~  + ,.I (3.75) / -4  ( - a )  - 12 3J;;y 

which is su f f i c i en t ly  good f o r  very s t rong degeneration, a << -1. 

i ; 
Proceeding a s  before, we f ind  t h a t  t he  expressions f o r  energy and 

4 
5,  pressure have the  same form f o r  t he  fermion gas a s  f o r  the  boson gas except 

a t h a t  t he  functions V(a,r) replace the  functions U(a,r): 
1 "  

r 

p. 

For the  case of weak degeneration,the expansions a r e  t he  same a s  before except 
f o r  an a l te rna t ion  i n  s ign o f  the  s e r i e s  terms 

c; 
Physically,  the  e f f e c t  of degeneration is  l i k e  an a t t r a c t i v e  force between 
boson p a r t i c l e s  which reduces the  pressure and l i k e  a repulsive force between 
fermion p a r t i c l e s  which increases  the  pressure.  For s t rong degeneration of 
fermions , the  Sommerfeld approximat ion is used : 

Subs t i tu t ing  f o r  a from equation (3.75) one obtains ,  t o  t e n s  of order  
y - 2 /  3 

From equation (3.68), y 2 /  var ies  a s  T'~ : I 1  





t he  wave functions. These quantum formulations remove time a s  a parameter 
f r o m  steady-state problems, and these may then become eas ie r  t o  solve than i n  
the  corresponding c las s i ca l  fo rmla t ions ,  even when the  c l a s s i ca l  model is a 
good approximation. 

In most gases of in te res t ,  the  pa r t i c l e s  behave c las s i ca l ly  and the  
s t a t i s t i c s  lead t o  the  Maxwell-Boltz~ini. d is t r ibut ion  f o r  the  equilibrium 
s t a t e  of a system of pa r t i c l e s .  However, a t  very high density and/or very low 
temperature, the  quantum e f fec t s  of gas degeneration a r e  sometimes observed. 
If the  gas is composed of  p a r t i c l e s  wi:h an odd number multiple of ha l f  in te-  

l ger spin ( i .e . ,  the  p a r t i c l e s  consist  of  an odd number of fundamental pa r t i -  
! cles) ,  the  pa r t i c l e s  cannot simultanecusly occupy the  same quantum s t a t e  and 
I they then obey Fermi-Dirac s t a t i s t i c s .  A t  low temperature o r  high density, 
t these pa r t i c l e s  behave as  though they *epel one another. Effects  of  t h i s  
1 repulsion a r e  observed in  gaslike, high-density conduction electrons i n  metals, 

f o r  exainple. I f  the  gas i s  composed of pa r t i c l e s  with a r ~  even number multiple 
! I -:L 

of  ha l f  integer spin ( i . e . ,  the  pa r t i c l e s  consist  of  an even number of funda- ., ' 1 " -  1 mental pa r t i c l e s ) ,  the  pa r t i c l e s  can simultaneously occupy the  same quantum I 
I i 

1. 

s t a t e  and they then obey Bose-Einstein s t a t i s t i c s .  A t  low temperature o r  high- ! 
i density, these pa r t i c l e s  behave as  though they a t t r a c t  one another. Effects  

of t h i s  condensation are noticed i n  the  low-temperature behavior o f  helium, I - 
1 

f o r  example. 

The analysis of the normally weak quantum e f fec t s  mentioned above reminds 
us t h a t  the models established f o r  the  pa r t i t ion  functions and the  derivat ive i I ,  ! 

thermodynamic properties are,  a f t e r  a l l ,  j u s t  models. Despite the  very good , 
accuracy these models a t t a i n  over a broad range of variables,  a l l  have approxi- 
mations tha t  eventually l i m i t  t h e i r  usefulness when cer ta in  parameters of 

! s t a t e  a re  extended f a r  enough. 



In sec t ion  3.3, we found t h a t  by expressilrg t h e  wave function as a 
Fourier i n t eg ra l  i n  momentum space, a component o f  momentum could be expressed 
a s  an operator  ac t ing  on the  wave function, a l l  divided by t h e  wave function: 

APPENDIX 3-A: HERMITIAN OPERATORS AND WAVE FRGNTS IN CYLINDRICAL 

AND SPHERICAL COORDINATES 

i _.. 1 - -I 
r. 

! A s i s i l a r  operator  r e l a t i on  obtains  f o r  observable quan t i t i e s  o ther  than 
3 - ! momentum: f o r  example, some a r b i t r a r y  function of  both momentum and pos i t ion  

such a s  t o t a l  energy. Such operator  r e l a t i o n s  may be expressed general ly  a s  

where 6 corresponds t o  t he  operator  and 0 corresponds t o  t he  observable 
quant i ty ,  which i s  a r e a l  number. 

? 
Multiply equation (3-A2) by $* and i s t e g r a t e  over a l l  space t o  obtain 

Also take the  complex conjugate of equation (3-A2), multiply 'jy $, and 
in t eg ra t e  over a l l  space: 

-- 
But s ince  0 is everywhere a rear  quant i ty ,  t h e  average value 0 ri~ust - a l s o  
be r e a l ,  which is t r u e  i f  and only i f  'i;j equals i ts  complex conjugate O*.  
Thus the  equal i ty  of equation (3.32) must obtain 

Any operator  t ha t  s a t i s f i e s  t h i s  equal i ty  is sa id  t o  be Hermitian with 
respect t o  t he  function . Often the operators  of i n t e r e s t  i n  quantum mech- 
anics  a r e  Hermitian with respect t o  an e n t i r e  s e t  of wave functions a s  well  a s  
t o  a s ing le  member of t h i s  s e t .  For example, a system i n  steady s t a t e  may 
general ly  occupy any one of  a number of d i f f e r en t  steady s t a t e s  a, b,  c, e t c .  
t h a t  have d i f f e r en t  energies and d i f f e ren t  wave functions, $a, $b, $c, e t c .  
These a r e  orthogonal t o  one another ( r e f .  3) and may be normalized so t h a t  

Equation (3-AS)  merely expresses t he  physical requirement t h a t  the  in t eg ra l  of 
the  probabi l i ty  over a l l  possible  configuration space is uni ty.  and t h a t  t he  
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ltaneously i n  steady s t a t e  i and 

r e s u l t  i n  d i f ferent  values o f  the  
the  s t a t e  of the  system 

du: n oilr, (3-A6) 

Multiply equation (3-A6) by r)j* and in tegra te  over a11 space t o  obtain 
' 1' 

* .  

$$j* (&$)d~ $$j*~i$4 dr = (3-A7a) 
f - 

where OQ represents the  average vs?ue of  0 during a time-dependent transi- 
t ion  f r o m  s t a t e  i t o  s t a t e  j. (Such t r ans i t ion  quant i t ies  a r e  discussed i n  
chapters 5 through 8 when perturbation coupling between s t a t e s  is considered, 
f o r  example.) Similarly, i n  the  reverse t rans i t ion  f r o m  s t a t e  j t o  s t a t e  i, 

'i 

$ * 

the  complex conjugates of the above re la t ions  may a l so  be formed a s  
t -  

*. i 
. , - 

$$j ( a * e * ) d ~  = $$Jdi*%* d~ = Oij* (3-A~c) 
k h  

Often we a r e  concerned with quant i t ies  where the  average value i n  t rans i t ion  
i n  one direct ion is  the  same a s  the  average value i n  the  reverse direct ion.  
Sometimes the  quantity is independent of  the  s t a t e  of  the  system and is con- 
served (Oi = 0.).  For example, 0 might be a perturbation potential  energy 
t h a t  is a funchon of  the  coordinates but is external ly induced and does not 
depend on the - s t a t e  of the  system acted on by the  perturbation. In such cases, 
the  averages 0 . .  and 8.. a r e  equal, and i f  the  observable is  everywhere a 

SJ J Z  r ea l  quantity the  averages must a lso  equal t h e i r  complex conjugates. Then 

Equation (3-A8) defines an operator known as  Hermitian with respect t o  the  
e n t i r e  c l a s s  of  functions. Note tha t  i f  0 is  a constant, such as  t o t a l  
energy o r  t o t a l  angular momentum, t h e  in tegra ls  i n  equations (3-A7) and (3-A8) 
a l l  vanish by v i r tue  of  the orthogcnality re la t ion ,  equation ( 3 - 4 ,  SO tha t  
the  operator f o r  any constant quantity is automatically Hermitian. 

Next consider some speci f ic  cases of  the general re la t ions  above i n  
Cartesian, spherical,  and cylindrical  coordinate systems. First, the  momentum 
operator of a pa r t i c l e  in  Cartesian coordinates (-56 a/ax) is  found t o  be 
Hermitian with respect t o  a given wave function $: 



, 
1, 

a, 

- ! The first in t eg ra l  above has bee; in tegra ted  by p a r t s ,  with u * $* and 
.? ch, = (a$/ax)dx. The term 1$*$1-, vanishes because t h e  wave fur\.cti-nn must 

vanish a t  t he  limits x + fw. 

?-- Th- k i n e t i c  energy operator  p, /2m i s  obtained by successive operations: 

8 ,  I and t h i s  operator  is a l s o  Hermitian. 

Problem 3.8: Show that 

Ule integration by parts. Note that not only the wave function but also all its derivatives must vanish at the 
limits z + ? -  if the probability is to be everywhere finitc. 

In spherical  coordinates,  t he  operators  a r e  not  qu i t e  a s  simple a s  i n  
Cartesian coordinates. Consider a p a r t i c l e ' s  r a d i a l  momentum py and i t s  con- 
jugate coordinate r, f o r  example. I f  pr i s  replaced by t h e  simple derjva- 
t i v e  -ih a / a r ,  the  r e su l t i ng  operator  is not Hermitian because o f  t h e  r L  
f ac to r  t h a t  appears i n  t he  spherical  volume element. However, i f  t h e  momentum 
is  expressed i n  an equivalent form 

1 
P,, ' F ( p r r )  (3-A1 2a) 

7 ,  

t 
and then the  r ad i a l  momentum is  replaced by the  der iva t ive  -ifi a / a r :  

j the  r e su l t i ng  operator  is found t o  be Hermitian with respect  t o  any spherical  
! wave function 4 t h a t  vanishes a t  t he  l i m i t  r + 0 :  



I Y ' " 5  . . - 
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(3-A13) 

Problem 3.9: Show that  the operator -iA(a/ar) i s  not Hermitian with respect to  wave ftrnctions expressed in 
rpherical coordinates. 

Show that the  operator for the kinetic energy associated with the radial  momentum of a par t ic le  i s  Hennitian 
when exprersed in the form 

(3-A14) 

Shw tha t  the operator in equation (3-A14) i s  obtained by two successive applications of the operator in 
q u r t i o n  (3-A12b) . 

In cylindrical  coordinates, the  s i tua t ion  is s l i g h t l y  more complex yet .  
The Hermitian operator f o r  the  radia l  momentum of a p a r t i c l e  is obtained when 
the  momentum is expressed as  the  average of two operators: 

i 

In t h i s  U s e ,  however, a Hermitian operator f o r  momentum squared i s  not 
obtained when two successive applications of the operator i n  equation (3-A15) 
a r e  used. 

d 
kf Problem 3.10: Show that  -h2[(a/ar)  + ( I /?n)] [ (a /ar )  ( l / ? r ) j  does not lead t o  a liemitian operator for 

F m n t w  squared in cylindrical coordinates. 

I: Show that the to;lowing average of two opeidtors i s  Ilermit~an in cylindrica: cc*rdinates: 

The Hermitian operators i n  equation (3-A14) and (3-A16) correspond t o  the  
usual Laplacian operators i n  spherical and cylindrical  coordinates when the  
function depends only on r and is independent of  the  angles. However, par- 
t i c l e s  trapped i n  a potential well typical ly have angular momentum as  well a s  
radia l  momentum. The angular momentum operators may o r  may not be Hermitian, 
depending on whether the  angular momentum is  an observable. For example, when 
the  potential  i s  given in  spherical coordinates, the  waye function may be 
expressed a s  a se r i e s  of terms of  the  type Pp(coa  O)em(, where the PF 
a r e  the  associated Legendre polynomials. Such wave functions a re  used f o r  
ro ta t ing  rnolscules i n  chapter 4, fo r  example. The operator for azi! rthal 
angular momentum (rotat ion about the  polar axis) i s  
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(Note tha t  m may be e i the r  a posi t ive o r  negative integer.) Thus the  opera- 
t o r  i n  equation (3-A17) i s  Hermitian f a r  t h i s  c l a s s  of functions and repre- 
sents  a r ea l  observable. Similarly, the  operator f o r  azimuthal angular momen- 
tum squared is Hermitian: 

Howc?ver, the  operator f o r  polar angular momentum pg (rotat ions about the  
origin i n  a piane of constanr 4) is not Hermitian when the  wave function is a 
purely r ea l  quantity i n  8. Let P be any such rea l  function; then the  opera- 
t ion  on P and integr? '01, over a l l  angles y ie lds  

The fac t  tha t  the  operator is nbii :iermitii\n corresponds t o  the f a c t  that  
is  unobservable. Because of  the uncertainty principle,  once the  component 

o t o t a l  angular momeatwn along the  polar axiz is defined, the  direct ion of  
the other  component is undefinable; t h i s  companent of  momentum may be consid- 
ered t o  be precessing about the  polar axis  (as it would i f  any s l i g h t  perturba- 
t ion  were present) and thus having a time average of zero. The magnjtude of 
t h i s  component of momentum is definable, however, s ince the  rotntionui k inet ic  
energy associated with polar angular mmentum ji .e. ,  pg2) is  an observable. 
Accoraingly, the  operator is found t o  be Hermitian: 

i 
I In cyl indrical  symmetry, the  angular mor8,cntum and the  angular momentum f ! 
I squared a re  given by the same operators used in  eqr~ations (3-A18) and (5-A19), 5." 
i respectively, while the  a component ~f l inear  momentum and its square a r e  ? 
, given by the same operators used fo r  the  a axis  components i n  Cartesian 

coordinates. z 

With t h i s  review of the  operators involved, consider the  character of the  I .a 

spherically symmetric wave function: 
r :  



a +~ 

which satisfies the Schroedinger equation in spherical coordinates for a wave 
function independent of 8 and 0 :  1 

f 

< . I  
!n this equation, k2 is the energy C in units of fi2/2mO2 and r is in h 

i units of ao. ! 
1 

If we operate on the function in equation (3-A22) with the radial 
momentum operator and then divide by the wave function, 

Thus, the wave function in equation (3-A22) represents a spherically uniform 
wave front that describes a particle with radiai momentum kf i .  If k is 
positive the wave advances outward; if negative, the wave advances inwdrd. 
Standing waves in a potential well are composed of outward- and inward- 
traveling waves and the wave functions are superpositions of functions with 
both positive and negative values of k .  If the potential V is some arbi- 
trary function of r, the steady-state or standing wave function has the 
character of a series of such functions: 

E 
; in the region E * V, and decreases exponentially in the region V > E: 
5 

4 
t For a stepped approximation t o  the potential V, the standing wave func- 
f tion is a sequence of wave functions of the above type which matches magni- ?'. k 
5 tudes and first derivatives at the interfaces. The spherically symmetric 
; standing waves thus have the characteristics of C cos kr/r or C sin k r / r ,  
b with variable wave number k and amplitude C, similar to the plane wave 
1 functions discussed in section 3.3 except for the fdctor r'l. This factor is 

just that required to conserve the probability flux of a spherically uniform 
wave growing in its cross-sectional area as r2. 

The wave function of a cylindrically symmetric wave is somewhat more 
j involved near the origin where solutions to the Schroedinger equation are 

Bessel functions; but, at large values of r, these solutions reduce to the 
form 



i.: 
t Once again, tfie wave function corresponds to an outgoing w w e  if k is 

positive. Standing wave functions have the character C ma k./~l/~ and 
C eCn kr/rl/* in the region E , V and fall off exponentially as 
C 4'kr/~112 in the region V > E. 

* : '  ,. 1 
i' With the above general characteristics of plane wr\ves, spherically 
P . 1  1 symmetric waves, and cylindrically symmetric waves in mind, one can more 

I 
t -  

readily visualize wave functions and their properties in cases of rather arbi- 
f 

* 
trary synunetry, and also visualize the physical meaning of Hennitian operators 1 

for momentum and momentum squared. d 
4 Problem 3.11: Show that a solution to the Schroedinger equetim in cylindrical cwrdinrtrr for a wave 
se . 1 function independent o f  6 and a 

i 
! can be expressed as 

i 
, i where the coefficients a, ere given by 

! For larze r, find that this series asymptomaticrlly approaches 
i :c 1 

i 
1 which, except =-r a normaliztng constant, is proportional to Bessel functions of hnlf integer order: 
t 

i IL + e I - l , 2 ( k r )  iJlI2(kr1 (3-ASlb) 
i 
i 

i i Problem 3.12: Show that thc h;rvr function given I?j cquotion (5-A3la) represents e cylindrically uniform wave 
i front with orltgoing momcntum 2 h .  Ilse thc mmrntom operator in equatir? (3-A15): 

ikr 
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CHAPTER 4 - RIGID ROTATORS 

The two-particle, steady-state Schroedinger equation is transformed to 
center of mass ar3 internuclear distance vector coordinates, leading to the 
free particle wave equation for the kinetic energy motion of the molecule and 
a decoupled wave equation for a single particle of reduced mass moving in a 
spherical potential field. The latter describes the vibrational and rota- 
tional energy modes of the diatomic molecule. For fixed internuclear distance, 
this becomes the equation of rigid rotator motion. The classical partition 
function for the rotator is derived and cornpiwed with the quantum expression. 
Molecular symmetry effects are developed from the generalized Pauli principle 
that the steady-state wave function of any system of fundamental particles 
must be antisymmetric. Nuclear spin and spin quantum functions are introduced 
and ortho- and para-states of rotators, along with their degeneracies, are 
defined. Effects of nuclear spin on entropy are deduced. Next, rigid poly- 
atomic rotators are considered and the partition fvnction for this case is 
derived. The patterns of rotational energy levels for nonlinear molecules are 
discussed for the spherical symmetric top, for theprolate symmetric top, for 
the oblate symmetric top, and for the asymmetric top. Finally, the 
equilibrium energy and spezific heat of rigid rotators are derived. 

L i 4.2 INTRODUCTION 

The diatomic molecule behaves as though it consists of two mass centers 
connected by a rather stiff spring. Following a collision between two mole- 
cules in a gas, the centers of mass of the colliding particles fly apart. At 
the same time, the molecules are usually rotating about their centers of mass, 
and if the previous collisions have been energetic enough to compress the 
stiff spring, the atomic centers of the molecule will also be in vibrational 
notion along the distance vector between them. Polyatomic molecules behave in 
a similar manner, generally rotating about their center of mass as an asym- 
metric top and vibrating as a collection of mass points connected by a complex 
network of springs. In this chapter, the springs or interatomic bonds are 
considered to be rigid, and the time-independent energy states associated with 
the purely rotational motions of the molecule are derived. 

The moments of inertia of most molecules are large enough that the energy 
levels of rotational motion are rather close together compared with a typical 
thermal energy kT. One can thus expect that a classical model of a rigid 
rotator will duplicate many features of real rotating molecules reasonably 
well. Nevertheless, quantum effects are clearly present in the pattern of 
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% y Diatomic molecules i n  steady s t a t e ,  f r e e  of  external perturbations, obey 
'5 ,.&. - 2 t he  two-particle wave equation: 
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where m l  and m2 a r e  the  masses of  the  atoms i n  the  molecule, V(rl - r2) is  
the  potent ia l  between the  two atoms expressed a s  a function of the  distance 
between them, $ is  the  t o t a l  wave function, E is  the  t o t a l  energy, and the  
k ine t i c  energy operator f o r  the  ith atom is 
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Equation (4.1) i s  transformed from the  coordinate system described by F1 + 
and r 2 ,  the vector position of the  two atoms, t o  the  center-of-mass coordinate 
vector and the  radius vector 3 between the  two atoms with the  following 
relat ions:  

ro ta t ional  energy levels  observed and i n  the  e f fec t s  o f  symmetry and nuclear 
spin t h a t  occur. The solutions f o r  molecular ro ta t ions  obtained with 

which have the  x components: 

!%a=- 1 Schrod inge t t s  wave eqy'atfon a r e  jus t  a s  simple a s  the  c l a s s i ca l  solutions, so -.,. . .. 
~ 3 . )  ,. i n  t h i s  case there is no pa r t i cu la r  advantage gained by use of  the  c l a s s i ca l  4;' . 1 model, while much of the  exact d e t a i l  wauld be los t .  Therefore, the  subject 
9 : 
i i i is approached primarily from the  quantum viewpoint, 
". f .  ' 1 

. I  j 
f h  - 
& - ;  4.3 SEPARATION OF TRANSLATIONAL AND INTERNAL MODE WAVE FUNCTIONS 

: 
f 
G 

and similar  expressions fo r  the  y aad a components. The p a r t i a l  derivat ive 
operators become 
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4: , - again with similar expressions for derivatives with respect to g and a. The 
9 ~ c  , 1. sum of the first two terms in equation (4.1) thus include terms such as . 
6 .c ! . . 
7, 

2 a2 1 a2 - (4.71 
j; 
i: 
$. 
-%, and the two-particle wave equation can be expressed as ,, ,.. . :6: 
*.. *>, ,-- 

* 

<: 
*- . 62 2 112 2 
* '  , 

- 0  $ + - v  $ W R  2 p r  - V(P)* + E$ = 0 (4 8) 
f' 

i .  
d I where 111 is the total mass, ml + mp, and 11 is the reduced mass defined by 

Assume the wave function is separable: 

f: I Then the wave equation can be written as 

The first t e n  on the left is a function only of the center-of-mass coordinate 
R, the second term only of the distance between atoms r. If the sum of these 
two functions is to be the constant (-E) for arbitrary values of R and r, then 
the individual terms must be constants. These constants are designated the 
translational energy of the center of mass, Et, and the internal energy of the 
molecule, Ei. Thus, the center of mass obeys the free-particle wave equation: 

while the internal motions are described by 

a wave equation with the same form as one that describes a single particle 
with mass moving in the potential field V(r). 
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The wave equations given above apply not only t o  the bound s t a t e  of two 
atoms i n  a diatomic molecule, but a lso  t o  the  col l i s ion  process between any 
two f r e e  par t ic les .  Collision processes a r e  not of primary concern here s ince  
the  same equilibrium s t a t e  r e su l t s  regardless of the  path followed toward 
equilibrium. However, the  engineer is ultimately interested i n  nonequilibrium 
propert ies  a s  well, such as  viscosi ty,  thdrmal conductivity, mass diffusion,  
e l ec t r i ca l  conductivity, e tc . ,  and these properties a r e  uniquely determined by 
two-body col l i s ion  processes i n  gases of normal density. Thus it may be appro- 
p r i a t e  t o  point out tha t  the  separation of the wave equation in to  equa- 
t ions  (4.12) and (4.13) immediately t e l l s  us something about conserved 
quant i t ies  i n  any col l i s ion  process: The k inet ic  energy, Et,  associated with 
the t o t a l  mass moving with the  center-of-mass veloci ty is a conserved quantity 
i n  col l i s ion ,  and is thus unavailable f o r  exci tat ion of in ternal  energy of  the  
coll iding par t ic les .  The only energy available f o r  t h i s  purpose is the  
k ine t i c  energy E i  associated with the  reduced mass u moving with the  
veloci ty of r e l a t ive  motion between the  par t ic les .  In the  f r e e  s t a t e ,  t h i s  
energy can be described as  the sum of a component associated with jus t  the  
change i n  distance between particles,and a component associated,with the  angu- 
l a r  momentum of the  pa r t i c l e s  about t h e i r  centers of mass. In the  bound s t a t e ,  
E i  is the sum of the vibrat ional  and rotat ional  energy of the  diatomicrllolecule. 

Problem 4.1: Show that the wave equation for three particles with masses ml, m l ,  and m 3  can be expressed 
as 

where M is the total mass, 

The term u' is another reduced mass given by I '; 

I .- and u is the reduced mass in equation (4.9). 

The center-of-mass coordinate fi is, in this case, 1 - i  

while r is the distance between atoms 1 and 2 as given in equation (4.3) and rq is the distance between 
atom 3 and the center of mass of atoms 1 and 2: 

Further show that if the potential can be expressed as a linear superposition of functions of r and of r q ,  

the steady-state wave function can then he expressed as a product of separable functions: [ , \  

Show that this leads to a wave equation for a free particle with mass M, a wave equation for a particle with 
r s s  P m v f n g  in the potential field V(r), and a wave equation for a particle with mass v v  loving in the 
potentill field Vv(rq), each with a constant component of energy. Note that this process can be repeated with 
the addition of still more particles, and so long as the potential is independent of the center-of-mass coordinate, 

C m i f i  
8 .  L 

C m i  



a wave equation for a free particle with total mass Z r n t  results that describes the motion of the center of Pvss 

of the system. Thus, in m y  system of interacting priticles, the kinetic energy associated with the center-oi 
mass motion is a conserved quantity acd is unavailable for chemical reaction or excitation of internal energy. 

4.4 CLASSICAL RIGID ROTATORS 

The c lass ica l  r ig id- ro ta tor  model of L A 

a diatomic molecule consists  of  two mass 
points constrained t o  be a fixed distance 
ro apart ( f ig .  4.1). The model is  f r e e  
t o  ro ta te  about the  center  of  mass, and 
the  angular momentum is  represented by a 
vector orthogonal t o  the  molecular 
axis  with the  magnitude P P ~ ~ W ,  where u CENTER () w 
, i s  the  reduced mass and w is the  angular OF MASS 
velocity. Classical ly,  t h i s  ro ta to r  
possesses the  energy I 

where I is  the  moment of i n e r t i a ,  
pro2 

Figure 4.1. - Rigid diatomic 
ro ta to r  with angular momentum 

Problem 4.2: Verify that the total kinetic energy of two point masses m l  and rn2, fixed a distance r 
apart and rotating about their ceuter of mass with angular velocity w, is the same as the kinetic energy of a 
single particle of mass u = rnlm2/(rnl + m2), which is constrained to rnove along a circle of radius ro with the 
same angular velocity w .  

The angular momentum involves two independent momentum coordinates, and 
it may be decomposed in to  two mutually orthogonal components: 

(A t h i r d  spa t i a l ly  orthogonal vector component i s  eliminated as  an inde~endent  
variable by the  re la t ion  tha t  L i s  orthogonal t o  the  molecular axis.) We 
sha l l  choose a spherical+coordinate system with the  polar axis  lying+in the  
plane defined by t and r o  a t  the polar angle 0 with respect t o  ro 
(fig.  4.2) .  

Problem 4.3: Show that the element of phase space dp, dp2 dql dq2 for the particle shown in figure 4.2 
(where p ,  and p are orthogonal components of the linear momentum vector F, and 9 ,  and q2 are corresponding 
distance coordiniter) can be expressed in tern of the angular momentum components Le and L+ and the angles 
9 md 4 
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?' 0'' 

I ,  , - . * , a,, . .. - ,..I- ;A i -.. --,3:, . . . .... $1 * ., . ' . 4 D C . 1  ..,.; ,P. . : r .+ *~ . -  . ., .,, *., ., 



With the relation given by 
equation (4.16), the classical parti- 
tion function (see eq. (1.52b)) for 
the rigid rotator is written: 

'\A p e 9 i y 0 .  Qr= 
I 
I - 

I 
I 

1 [ f j" '" .~e+%*~  dtO cin B de ti4 
I h 2 - - 4  0 - - 

(4.17) 
Y 

The integrations over 8 and 4 give 
. I the total solid angle, 4 t  steradians, 
\ I 

\J and equation (4.17i becomes 

x 

E 
I w Q - ~ L ~ ~ I ~ ~ , ~ ~  Figure 4.2.- oordinate system, angultr Qr= 

momentum , and linear momentum p - 0 ~  h2 er 
for the rigid diatomic rotator's 
equivalent single-particle motion. 

(4.18) 

The effective mass is the reguced 
mass p, the radius vector ro is where Or is a characteristic 
constant in magniiude, and the rotational temperature ?i2/21k. 
line3r momentum p is orthogonal 
tu Po. 

The unit of angular momentum in classical phase space may be deduced from 
t the uncertainty principle developed in chapter 1: 
*I *' t 

where p i  and q i  represent a linear momentum and its conjugate distance coor- 
dinate, respectively. For a particle moving in a circle of radius r,, the 
maximum uncertainty in linear position is 

-5 [ which corresponds to the minimum uncertainty in angular momentum 
:: 

j I Thus A 2  is 

i 
.?" 
. :  

the quantum unit of angular momentum. The angular momentum can thus be / determined only within some interval that is a multiple of a: 

1 f .  i 
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rgy of a two-dimensional r i g i d  

4212 = kept 2 E = -  21 (4.24) 

Problem 4 .4 :  Show t h a t ,  f o r  two independent modes o f  angular momentum, thc number o f  c e l l s  o f  phase space 
which have the  t o t a l  energy given by q u a t i o n  (4 .24)  i s  22 .  Using t h i s  value f o r  t h e  degeneracy, g ( 1 1 ,  show 
that  the  phase integral  cxpressed i n  the form 

1 - g(Z)o-E(z)lkT dl 
Q P =  PJ. (4.25) 

leads t o  the  same r e s u l t s  a s  equ: t i o n  (4 .16 ) .  

IZED RICTD ROTATORS 

The r i g i d  ro ta to r  has only k inet ic  energy; the  potential  is zero so the  
steady- s t a t  e wave equation is 

v2y + % EY = 0 (4.26) 
6 

The wave function Y is separable in  spherical angular coordinates 0 and 0 :  

Y(es4) = P(9)@(4) (4.27) 

Substituting equation (4.27) ' in to  (4.26) and dividing by Y one obtains 

which can be arranged as a sum of separate functions o f  8 and of 4 

The two terms on the l e f t  must be constants, one the  negative of the  other,  t o  
s a t i s f y  t h i s  re la t ion  f o r  arb i t rary  choice of 9 and 4.  Let 

For which a solution i s  



The term m must be integer for 4 , t o  be single vrlusd, and the  constan$, o f ,  , 

integration (2%)-lr2 has been normalized so there iS  uni t  probrbil i ty that : 
the rotator, appears-. somewhere i n  the. interval  0 < + < 28,. ghat .is, the. inte;  .', , 

grul of O W  over a l l  9 is unity, ,. ,. 
. ~ 

- f .  . , '. " 
2 , .  1, 

The remaining equation fox P . now becomes - 7:.  

d ") (" rin ez(.tnea + x r d n 2  B - m 2 ) ~ - 0  . 
' (4.32)' . ., 

,: , ' -  ., - .  , 

.which is thb Legendre dif ferent ia l  qua t i&.  A f i n i t e  solution' bxists  . . only . '- 

for  energy values given by 
, . 

?i2 
. , 

B .,Z(Z + 1) - Z(2 + l ) k e ,  (4.33) .- 

with 2 constrained t o  integer values equal t o  o r  greater than ma tha t  is, ;- 
2 2 m. Conversely, the values of m are constrained t o  integer values 

= ZW8 are 
between zero and 2, tha t  is, 0 5 m 5 2. The solutions, 
power ser ies  with a f i n i t e  number of terms known a s  the associa Legendre 
polynomials . The a1 lowed steady-state energy levels fo r  the quantized rotator 
d i f fe r  from the classical  rotator i n  that  Z ( Z  + 1) replaces Z2 i n  equa- 
t ion (4-24). The difference becomes small a t  large values of 2, an example 
of the corres ~ndence prinicple. Since the quantized t o t a l  angular momentum + is li ( + l) ,  the classical  relat ion between energy and angular rrnnienturn is 
retained. 

Solutions t o  equation (4.32) i n  terms of the associated Le~endre poly- 
nomials are derived in  any elementary text  on quantum mechanics (refs. 1 and 
2) and are  not repeated here. The t o t a l  rotational wave function is the  
spherical harmonic function: 

e 'h4/52~ + I)(Z - m ) l  q(,, 
f(0.0 = - 2(Z + m ) l  (4.34) 

, Jzl;; 

where the factor ((2Z + 1) (2 - m) 1/2(Z + m) 1l1I2 is the  normalizing constant 
required so that  integration of Y P  over a11 4n steradians is unity. Note 
tha t  m is defined as  a positive integer here, and both positive and negative 
values are allowed by including both positive and negative exponentials i n  the 
.solutions for  ( 4 )  ( (4.31)). Often m is treated as a positive o r  nega- 
t i ve  integer; then the absolute values. vt, be specified i n  the associated 
Legendre function and its n o w l i z i n g ,  constant. 

: 'The fint few associated Legendre polynopliah are , 

.. .' , , 

' . .  . . 
, . .  
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Additional members can be derjved from the recursion relations; 

or from the relation between Legendre polynomials PO and the associatc~~ 
Le~mitre polynomials #: t 

The q m t m  number m represents the magnitude of the pnjection of the 
total angular momtun (in units of 4) on the polar axis of the coordimte 
system chosen. Classically, the total angular romtum is 2 md i t s  projec- 
tion on the polar axti, t uos 8, .may t a k  my value from - 2  to  t fig. 4.3a). 
For the quantized rotator, the total angular xmntuu i s  & i C   it^ 6 
md i t s  projection on the polar axis can take the (22 + 1) integer values from 
-2  to 2 including zero (fig. 
states with total angular momentum 
Z(2 + I)&@, is (22 + 1). 



I 
I (a) Classical  ro ta to r ' s  t o t a l  angular 
i momenttan vector 2 (in un i t s  o f  6) 

i 1 my be a t  angle 0 and have the  

-: 1 projection m = 2 w e  8 on the  
polar  axi.,, ~ h i c h  takes any value -4 from 2 t o  -2. Without ax, exter- 

i nal f i e l d ,  the  vector 2 remains 
I 1 fixed i n  space. I f  the  angular 
i maenturn i*i coupled t o  s f i e l d  
I aligned with the  polar axis ,  the  

1 colrponcat m remains fixed while 
the  component 2 sin 0 precesses 
about th@ polar  axis  with an 
angular veloci ty t h a t  increases 
with the  strength of the coupling. 

(b) Quantized ro ta tor ' s  t o t a l  angular 
momentum vector f i n  (in un i t s  
of  f i )  takes one of  the  (22 + 1) 
possible posi t ions with respect t o  
the  polar  axis ,  f o r  which the  pro- 
ject ion m is any in teger  from 2 
t o  -2. Again, the  t o t a l  angular 
mnnentum vector renurins fixed i n  
space without an external f i e l d ,  
but i f  coupled t o  a f i e l d  aligned 
with the  polar  axis  the component 
m fixed while the  compo- 
nent [a(Z + 1)-mz] precesses about 
the  axis.  

Figure 4.3.- Rotator angular mutentun and its projections on an axis  o f  
syametry. 

The quantum par t i t ion  function for  a diatomic ro ta to r  is thus 

In the  l i m i t  as T becomes large compared with 0,, the  s u m ~ ~ t i o n  can be 
approximated by the  in tegra l  



which gives the same result as the classical model. At lower temperatures, 
the sumation in equatior (4.37a) should be performed for the first few tens, 
then the remaining series .:an be approximated with an integral 

At very high temperatures, the rigid-rotator partition function is 
proportional to T without limit, as given by equation (4.3%) . This behav- 
ior is due to the infinite number of energy levels tt !t exist for the rigid 
rotator. A qualitatively more realistic model of rear molecules would trun- 
cate the rigid-rotator levels at the dissociation limit D, in which case the 
nnximurn rotational quantum number 1' is approximately given by 

The integral approximation to the partition function sum then approaches a 
finite limit: 

This limit is large - the order of lo4 for many diatomic molecules. 
In practice, a correction for truncation of the rotational energy levels 

is nonnally unnecessary, Corrections for centrifugal stretching and vibration- 
rotation coupling (considered later) are iar larger at temperatures of inter- 
est. Molecules are nonnally all dissociated at temperatures the order of Dlk, 
where the asyluptotic li~it on rotational partition must be considered. How- 
ever, the truncated-rotatgr model does illustrate the qualitative concept that 
a finite limit to the partition functjon does exist. 

In spectroscopic notation, the observed rotational energy levels are 
expressed as 

whetn 3 replaces the rotational quantum number I ,  and B is the rotational 
energy constant. The rotational constants are usually listed in wave numbers; 
the energy 5-s then in units of hc. The constant B in wave numbers is 
related to the moment of inertia I and the characteristic temperature Br 
by 

A feu typical values of B and Or for diatomic moleculss are kiven in 
table 4.1. ExcepL for Hp and D2, the values of Or are well below the 
critical t q e m t u r .  where gas phase cannot exist. Since the classical 
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4.6 MOLECULAR SYMMETRY EFFECTS 

TABLE 4.1. - ROTATIONAL CONSTANTS FOR DIATOMIC MOLECULES~ 
A 

Molecule or radical B, cm'l €I,, O K  
0 

Po, A 

One additional factor must be included in the partition function, the 
symmetry number a, which equals unity for diatomic molecules when the two 
atoms in the molecule are different (as with NO, CO, HD, or 016 017, e.g.) and 
equals two when the particles are indistinguishable (as with N~~ N~~ or 
016 016, e.g.1. The complete rotational partition function is, in the limit 
T >> Or, 

T 
Qr = (4.40) 

H2 
HD 
D2 
02 
N2 
NO 
CO 
cz2 
Br2 
I2 
OH 
CH 
HC Z 
tIBr 

Classically, we say the symmetry ndmber occurs because the same observ- 
able state occurs when the angle of a homonuclear diatomic rotator changes by 
n, whereas the angle must change by   IT for the heteronuclear diatomic rotator 
to arrive at the same observable state. Thus, half the angular range must be 
excluded from the phase integral for the hcmonuclear molecule. 

In quantum mechanics, we find from the Pauli exclusion principle (dis- 
cussed in the next section) that the wave function of any system of particles 

aMolecules are assumed to be composed of the most common atomic isotopes and 
the constants given obtain for the ground vibrational state (i.e., B, and r, 
in spectroscopic notation), since these are appropriate to the calculation of 
the partition function where energies are measured relati.~e to the ground 
state. The spectroscopic values Be and re which obtain at the potential 
minimums are slightly different due to rotation-vibration coupling as dis- 
cussed in Chapter S. B , = B , - a e / 2 ,  where ae is the rotation-vibration 
coupling constant. 

approximations for rotational partition function are adequate whenever 
7' :> 8,, the more exact quantum solutions must be considered for gas phase 
only for H2 and DZ. Even then, the classical approximation is adequate at 
normal temperatures and above. The interatomic distance r = ( I 2  is 
also listed. Note that the values of ro are all the order of 1 A. This is 
a consequence of the fact that outer electron orbitals are about the same size 
for all atoms, so the binding electron interactions occur at about the same 
internuclear distance. 

59.37 
44.15 
29.93 
1.4378 
2.001 
1.6957 
1.9227 
0.2430 
.08077 
.03730 

18.514 
14.190 
10.440 
8.360 
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85.42 
63.52 
43.06 
2.069 
2.879 
2.440 
2.766 
0.S496 
.I162 
.0537 

26.64 
20.42 
15.02 
12.03 

0.7506 
,7539 
.7477 

1.2107 
1.0968 
1.1538 
1.1308 
1.9918 
2.2856 
2.6687 
0.9799 
1.1303 
1.2838 
1.4233 



must be antiasymmetric with respect to the exchange of any two fundamental 
particles - that is, the wave function must change sign when two such parti- 
cles exchange quantum states. Note that exchanging quantum state involves 
exchanging position as well as exchanging energy level since the uncertainty 
principle divides momentum-coordinate space into cells of different quantum 4 
state. Thus the rotation of a homonuclear diatomic molecule through the angle i 
n exchanges two like nuclei composed of fundamental particles - protons and I 

i 
neutrons. These nuclei possess both spin and orbital momentum. For a spin 
state of given symmetry, the orbital momentum must have a given symmetry in . * I 

accord with the Pauli principle; even orbital symmetry corresponds to even- i 

numbered Z integers and odd orbital symemtry corresponds to odd 2 integers ! 

(note the symmetry of the associated Legendre polynomials listed in eq. (4.35)). i 

Thus only half the rotational states are available to a homonuclear diatomic ! 
? 

molecule in a given spin state. Even and odd rotational states of such mole- 
cules are thus like two separate species, and the partition function for each 
species includes a summation over half the total number of rotational levels. 

The reader is aware that collisions of molecules with other gas particles, IE 
with photons, or with the walls of a containing vessel can produce perturba- 
tions that change the quantum state of the molecule. These perturbations have 
a negligible effect on nuclear spin states of the molecule, however, because 

6 spin is influenced mainly by magnetic forces that are relatively weak compared 
with the electrostatic forces that perturb molecules during collision and also 
because the different spin states are widely separated in energy, with the 
result that collision perturbations are unlikely to cause transitions in spin 
state. Thus once a homonuclear diatomic molecule finds itself in a rotational 
state of one symmetry, it will maintain that symmetry far most practical pur- 
poses. Rotational states with even-numbered 2 will make transitions only to 
other states with even-numbered 2 ,  states with odd-numbered 2 only to other 
states with odd-numbered 2 .  Of course, eventually some rare collision event 
or photon absorption will produce an excited state in which both nuclear spin 
and rotational symmetries change, leaving the molecule in a new steady state 
that satisfies the Pauli principle. Thus a mechanism exists for eventually 
establishing complete equilibrium between even and odd rotational states. 
However, these events may be so rare that the homonuclear diatomic gas is 
frozen, for most practical purposes, in whatever nonequilibrium ratio between 

$ even and odd states which may be imposed as an initial condition. 
% 
L: 

To understand the effects of nuclear symmetry in a more fundamental way, 
the Pauli principle of quantum mechanics and the effects of nuclear spin are 
considered in more detail in the following sections. 

4.7 THE PAUL1 PRINCIPLE 

To state the Pauli principle, the definition of a fundamental particle 
should first be treated in more detail. A fundamental particle is defined to 
be an indivisible atomic particle with exactly 112 quantum unit of internal 
angular momentum (called a unit of spin). These may include neutri 10s and 
mesons, for example, but for present purposes, we consider only three funda- 
mental particles: electrons, protons, and neutrons. Atomic nuclei are 
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considered as aggregates of protons and neutrons; molecules consist of a group 
of such nuclei bound in an electrostatic potential-well resulting from their 
own charges and the charges of an appropriate number of orbiting electrons. 
Any particle with more or less that one spin unit is automatically a complex 
particle; a particle with one spin unit may be a fundamental particle, or a 
complex particle composed of an odd number of fundamental particles in which 
all spins are paired except one. Spin states are considered in more detail in 
section 4.8; for the present, we note that just two spin states are observed, 
which result in zero spin when paired. Accordinglv, particles composed of an 
even number of fundamental particles must have an even integer number of spin 
momentum units - such particles are called bosons. Particles composed of an 
odd number of fundamental particles must have an odd number of spin momentum 
units - such particles are called fermions. Of course, the fundamental parti- 
cles themselves are fermions also. 

With this introduction to the definition of fundamental particles, the 
Pauli principle may be stated simply: no two identical fundamental part icles  
can ex i s t  in  the same quantwn s t a t e .  The principle is merely an empirical 
statement that generalizes all presently known observed facts; it is not 
derivable from more fundamental principles as far as we know. 

A somewhat more general statement of the Pauli principle, which calls 
attention to the mathematical symmetry relations implied in the elementary 
statement above, is useful: generalized Pauli principle - the steady-state 
wave function o f  any system of fundamental particles must be an t i symetr i c .  
Recall that antisymmetry means a change in sign of the wave function when any 
two filndamental particles are interchanged. The value of $$*, or the proba- 
bility, is unchanged by this operation, of course. Sometimes the Pauli prin- 
ciple is stated in a slightly different but completely equivalent way: the 
steady-state wave function c f a n y  system of part icles  must be antisyrrunetric 
with respect to  the exchange of any two identical f e d o n s  and syrrunetric with 
respect t o  the exchange of any two identical bosons. The reader can readily 
see that this statement of the principle follows from the generalized state- 
ment given above and from the definitions of fundamental particles, fermions, 
and bosons. The elementary statement of the principle is also seen to apply 
as follows: 

Consider two independent identical particles 1 and 2, with quantum states 
i having the wave functions ul and u2 available to them. A total wave func- 

tion for the system of two particles can be constructed: 

which describes particle 1 in state ul and particle 2 in state 242. However, 
this function does not satisfy the generalized Pauli principle because gener- 
ally when the particles are interchanged, 

However, an antisymmetric wave function thtit satisfies the Pauli principle is 



Note that if ul = up, the total wave function vanishes. In other words, the 
probability is zero that the two particles occupy the same quantum state. On 
the other hand, if symmetrical wave functions such as 

were allowed, the wave function remains finite when ul = 242, and two or more 
identical particles could then occupy the same quantum state with finite proba- 
bility. This contradicts all experimental evidence: for example, all the elec- 
trons in a multi-electron atom would occupy the same ground state electronic 
level at low temperature, and the structure of electron configurations leading 
to the periodic system of elements would be destroyed. 

In the more general case when n identical fundamental particles have 
the independent wave functions ul, up, . . ., u, available to them, the anti- 
symmetric wave function for the total system can be expressed as a determinant: 

Exchanging any two particles is equivalent to interchanging two rows, which, 
of course, changes the sign of the determinant. The total wave function may 
contain factors that are symmetric, but it must contain an odd number of 
antisymmetric factors to satisfy the Pauli principle. 

For the homonuclear diatomic rotator, exchanging the two atoms is 
equivalent to reversing the radius vector so (fig. j4.2)), which in polar 
coordinates is produced by a change in 8 of IT radians with no change in 4. 
The spherical harmonic functions Y(B,$) (eq. (4.34)) are even functions of 0 
when I is even and odd functions of 0 when Z is odd. To select the 
appropriate rotational wave function, the symmetry properties associated with 
nuclear spin must be considered. 

4.8 NUCLEAR SPIN 

Spin is generally conceded to be a purely quantum phenomenon that has no 
classical analog (ref. 3). For example, Dirac finds that the relativistic 
quantum treatment of the electron leads to the two observed spin states of the 
electron in a natural way, without the need for additional postulates (ref.4). 
However, this treatment is so involved that spin is usually explained nonrela- 
tivistically as an unknown internal degree of freedom associated with the 
internal angular momentum of fundamental particles. Such particles must have 



an angular momentum of 6 XI2 and a degeneracy of 2 to agree with observed 
facts - such as the measured magnetic moments of protons and electrons, the 
observed periodic structure of the table of elements, and the fine structure 
of optical spectra. Accordingly, a spin quantum number 8 = 112 is assigned 
to the i~ternal state of these fundamental particles; the angular momentum is 
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then + 1) & and the degeneracy is 28 + 1, as required. The orthogonal- 
ity and symmetry properties of the spin wave functions may be deduced from the 
commut.\:ion rules that exist for angular momentum operators in general, with- 
out specifying in analytic detail what those functions are (ref. 1). 

Actually, spin need not be treated as a mere formalism. Although the 
quantitative analysis is very involved, the spin concept is readily appreci- 
ated as a direct consequence of the uncertainty principle. A moving particle 
hi.1~ an t~ncertainty in position approximately equal to the De-Broglie wave- 
length :ilong the direction of the observed momentum vector, but She same par- 
ticle h : s  uncertainty in position and momentum along the other two directions 

spat':; as well. If the situation is described in cylindrical coordinates, 
this means an uncertainty in the r and 8 coordinates and their derivatives 
about the momentum vector. For r as small as possible, the uncertainty is 
described by a wave function with either *1/2 quantum units of angular momen- 
tum. The classical analog would describe a particle that corkscrews either 
clockwise or counterclockwise about the observed momentum vector, with a cir- 
cular component of velocity c, which adds to the observed linear velocity 
(see, e.g., Huang's discussion in ref. 5 of the zitterbewegung of the Dirac 
elec..ron). If the particle is charged, a magnetic moment results, of course. 
A so~~ewhat simpler semiclassical model treats spin as the quantized rotations 
of particles with very small but finite moments of inertia, as though the 
partlcle consisted of "smeared out" distributions of mass. Such a model gives 
many qualitative similarities to the actual spin states and therefore has some 
heuri jtic value, whatever its other shortcomings. 

The two spin wave functions for 8 = 1/2 can be symbolically designated 
as a and 3, without specifying exactly what these functions are. However, 
they must be orthogonal and normalized with respect to integration over some 
unspecified spin variable T, representing the spin degree of freedom: 

Two identic:,? particles I1 and 2) can exist in one antisymmetric spin 
function: 

fa(l)B(2) - a(2)8(1)1 Sa ' 3 (4.44a) 

or in rsy of three symmetric spin functions: 

S, = a(l)a(2) 



The antisyaaast?ric, function (eq. [4,44a)) represent the  caqe when the  spins a r e  
opposed, the  t o t a l  spin quantum numbsJ S,- end t o t a l  spin angularmamsntum.are 
both zero, and the  degeneracy (2s + 1) I. The symmetric spin functions 
(eqs. (4.44bDc,d)) represent the  case when the  spins are. additive, the  t o t a l  
spin quantum number S = 1, the t o t a l  spin angular momentum is fi d, and the  
degeneracy (25 + 1) = 3. These various spin configurations a r e  diagrammed i n  ;. 
f igure 4.4. ,, , 

2 

(a), Antisymetric spin configuration (b) Symmetric spin configuration 
S, = a(1)8(2) - a(2)8(1) ; t o t a l  S8 = a 1) 8 (2) + a (2) 0 (1) ; t o t a l  spin 
spid S = 0. S = /L 2 a, with zero projection on 

the  polar  axis. 

(c) Symmetric spin configuration (d) Symmetric spin configuration 
S* = a(l)a(2);  t o t a l  spin s = JZ A, s8 = 8 (1) $(2) ; t o t a l  spin s = 4Z 6, 
with projection ?& on polar axis; with projection -8 on polar axis; 
Sy is shown i n  the  plane of the S2 i s  shown i n  the plane of the 
figure, but both S2 and S1 + S2 figure and S1 and S1 + S 2  both l ie  
l i e  out of t h i s  plane. out of t h i s  plane. 

Figure 4.4.- Spin momentum and i t s  projections on an axis of symmetry. 



Problm 4.5: Verify that the two particle spin functions in equations (4.44) are norouilizd and are all 
orthogonal to one another. if the individual spin functions a and 0 are nor~lllited and orthogonal as defind in 
equations (4.45). 

The notation used for the spin function (4.44~) might, at first glance, suggest that the spins are opposed. 
However, it means only that the projections of the two spins on a polar axis are opposed (fig. (4.4b)). The 
paired spin states in equations (4.44~ and d) have additive projections on the polar axis and lie in a plane such 
that each spin projection is h/2 and the total spin projection is k on the,polar axis (fig. (4.4~)). Notettiat 
the expression '*parallel spin" means that the spins reinforce one another, not that they are truly parallel in the 
classical sense. 

Problem 4.6: The following problem is designed to convey some heuristic notions about spin with a node1 that 
is nonmlativistic, but where the nrximum velocity is taken to be the velocity of light and the Einstein equiva- 
lence between energy and mass is used. Keep in mind, however, that spin should properly be analyzed by use of the 
general relativistic relations of accelerated motion. 

Consider a hypothetical, nonrelativistic particle with finite moment of inertia. According to fundamental 
quantum principles of angular momentum operators, such particles can exist (ref. 1) in states with angular momntua 
[8(8 + l)ll"fi, which have projections f.1~6 on an axis of symmetry, where m I8 and Am is an integer (as 
rquired by the site of the quantum cell in phase space given by the w~certainty principle). This relation is 
satisfied if 8 takes either the integer values 0, 1, 2, 3, . . . , etc., or the half-integer values 112. 3/2, 5/2, . . . , etc. The only observed spin state of fundamental particles is 8 = 1/2, and excited spin states are not 
observed. 

When the particle is following a trajectory determined by some potential field, the tangent to the trajectory 
becomes the axis of symmetry and the wave function in this coordinate has the f o m  e i h  (discussed in ch. 3). 
However, the particle is also localized in the remaining c~ordinates, chos~m to be the cylindrical coordinates r 
and 6 measured relative to the trajectory line. According to the uncertainty principle, the maximum localization 
(i.e., the smallest average value of r) occurs with the lnaximum velocity (i.e., the velocity of light). Visualize 
the particle then with an angular momentum about a point that corresponds to a circular motion with the velocity of 
light and with a slow drift component along the linear trajectory that corresponds to the linear laomentun kli. 

In terms of a quantum wave function, consider solutions to the Schroedinger equation with rn = 112. Show 
that, in cylindrical coordinates. 

# = a  
fi@/2 (4.45a) 

satisfies the Schoedinger equation and results in a component of angular momentum along the polar axis 

The wave function in equation (4.451) actually corresponds to a traveling wave with momentum hl2 circling 
the polar axis with wavelength 4nro, where ro is some average radial distance. In steady state, the hypothet- 
ical particle with 8 = 1/2 is represented by a standing wave formed from linear combinations of the wave 
functions given by equation (4.45a) 

Show that these spin functions are normalized and orthogonal to one another as required. These functions are not 
single-valued, of course, but the probability P* is. Note that the probability is unity that the particle is in 
one or the other of the two spin states. 

The spin wave function might include some function of the radial distance also, but, for present purposes, it 
is considered to be a delta function 6(rO) that represents a thin shell distribution at average distance ro. 
To estimate the size of ro, assume that the rest mass of the hypothetical particle equals the spin energy: 

Find the moment of inertia of such a particle having 1 atomic unit mass ( 1 . 6 6 ~ 1 0 - ~ ~  gm). Find the radius ro of 
such a particle if the mass is uniformly distributed in a spherical shell and compare this with the effective 
radius of protons, known from high-energy scattering measurements to be the order of 10-l3 cm. 

Sometimes it has been suggested that rest mass might be related to the energy of a surface charge of 1 esu 
placed on a spherical particle. Show that such a charge energy, e2/ro, is negligible compared with the spin energy 
of the above particle. 

Show that if an excited state with spin s = 3/2 existed without a change in moment of inertia, this would be 
the order of 10' eV above the ground state. For most practical purposes, such a high energy state would not be 
excited and would remain unobserved. Show that the surface velocity at the equator of the above particles is rela- 
tivistic in the ground state, so that higher states would correspond to super-relativistic spin velocities and 
would presumably he unohservable for this reason also. Thus, the maximum possible localization of the spinning 
sphere, that is, the minimum size ro. just corresponds to the maximum possible angular momentum and energy for the 



A collection of odd-numbered nucleons must have an odd number of half spin 
units (8 = 1/2, 3/2, 5/2, . . .) while an even number of nucleons must ha-re an 
integral number of spin units (8 = 0, 1, 2, 3, . . .). Nuclei with half inte- 
ger spin are called fermions; they obey Fermi-Dirac statistics because the 
wave function for a collection of fermions must be antisymmetric with respect 
to exchange of any two identical fermions, in accord with the Pauli principle. 
Thus, no two fermions can occup the same quantum state or cell in phase space. r (Examples of fermions are H1, H , ~ e ~ ,  c13, and N ~ ~ . )  
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Nuclei composed of an even number of nucleons, and thus with an integer 
number of spin units, are called bosons; they obey Bose-Einstein statistics 
because the wave function for a collection of bosons must be symmetric with 
exchange of any two identical bosons, again in accord with the Pauli principle. 
(Each boson pair exchanged means exchange of an even number of nucleons, which 
leaves the wave function unchanged in sign.) Thus, two or more bosons can 
occupy the same quantum state. (Examples of bosons are H ~ ,  He4, c12, N ~ ~ ,  and 
0'6.) 
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particle if the velocity o f  light is aasumd to be limiting. Of course, a precise analysis of real spinning parti- 
cles at these spin velocities would require that mass, size. and angular frequency a11 be transformed in accord 
with the general relativity of accelcroted motion. 

In accord with common usage, spin is hereafter described as having the 
value 8,  the spin quantum number, but it should be clearly understood that 
#is means a total spin momentum of h(8 + 1) IS. 

4.9 ORTHO- AND PARA-SPIN STATES OF HOMONUCLEAR DIATOMIC MOLECULES 

Generally, nuclei are a collection of fundamental particles or nucleons 
[protons and neutrons), all having intrinsic spin 8 = 1/2. The total spin 
of the nucleus is the algebraic sum of the individual spins 

a = z s i  (4.46) 

A diatomic rotator composed of two identical fermions must have the anti- 
symmetric spin function (known as the para-state) when the rotational quantum 
number 2 is even, but must have a symmetric spin function (known as the 
o.*:ho-state) when 2 is odd. Then the spin-orbit wave function of the nuclei 
wf31 be antisymmetric as required by the Pauli principle for exchange of 
fermions. On the other hand, diatomic rotators composed of two identical 
bosons must be in the ortho-spin state when 2 is even, and in the para-spin 
state when 2 is odd in order that the spin-orbit wave function be symmetric 
~5 required by the Pauli principle for exchange of bosons. 
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Now consider the HZ molecule. The H nucleus is a proton with spin 1/2. 
The para-spin function, corresponding to opposed spins with total spin 0, has 
a degeneracy of 1; the ortho-spin function, corresponding to parallel spins 
with a total spin of 1, has a degeneracy of 3. The equilibrium ratio of para- 
to ortho-Hn is the ratio of the even and odd rotational state partition func- 
tions weighted with the appropriate nuclear spin degeneracy: 
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C (22 + l ) e  - Z(Z+l)ep/T 
Hz (para) Qp (even I )  2=0,2,4. . . 

h- ' 3Qp (odd 1) = 3 C ( 2 Z + l ) e  - 2 (Z+ 1) Bp/T 

A t  high temperature, t he  two p a r t i t i o n  functions both approach T/2eP and t h e  
r a t i o  of  para- t o  ortho-H2 approaches 1/3. 

In  t he  more general case,  t h e  atoms of  a homonuclear diatomic molecule 
have spin 8, which may be any number o f  ha l f - in teger  un i t s .  The t o t a l  
nuclear  spin degeneracy ( r e f .  2) is 

corresponding t o  t h e  f a c t  t h a t  t h e  sp in  of one atom can be or iented (28 + 1) 
d i f f e r en t  ways i n  space, while t h e  sp in  of t h e  second atom can couple t o  any 
one of these i n  (2s + 1) d i f f e ren t  ways. The t o t a l  spin project ion on the  
molecular ax i s  u thus can take a l l  t h e  i n t eg ra l  values from 28 t o  -2s. The 
even functions a r e  those f o r  which u takes t h e  values ( r e f .  2) 

u = 28, 28 - 2, 28 - 4, e t c .  (4.49a) 

and the odd functions those f o r  which u becomes 

u = 2s - 1, 28 - 3, e t c .  (4.49b) 

There a r e  8 + 1 d i f f e ren t  combinations f o r  t he  even functions, each capable 
of  (2s + 1) d i f f e r en t  or ien ta t ions  i n  space. Thus, t h e  degeneracy o f  ortho- 
s t a t e s  is 

9, = (8 + 1) (28 + 1) (4.48b) 

Similar ly,  there  a r e  s d i f f e ren t  odd s t a t e s ,  again each with (28 + 1) 
or ien ta t ions  i n  space, so the  degeneracy of  para-s tates  is 

Problem 4.7: Show that if the nuclear spin of the atoms in a homonuclear diatomic molecule is 8 ,  the total 
number of ortho-spin functions given by equation (4.49a) i.; the sum 

when 28 is odd,and the sum 

when 2.9 is even. Also show that the total number of para-spin hmctions given by equation (4.49b) is the result 
given by equation (4.48~) in either case. 

Next consider the  deuterium molecule D2. The t o t a l  spin of  the  D atom 
can be 0, but t h i s  i s  an exci ted s t a t e .  The ground s t a t e  of the  D atom is 



Collisions can cause conversions between ortho- and para-states, but 
these occur infrequently because the spins are so weakly coupled to the motion 
of the nuclei. Transitions are more common in the presence of strong inhomo- 
geneous magnetic fields, or where a paramagnetic collision partner such as O2 
or NO is available to function as a catalyst. Conversions are also produced 
by dissociation. When the dissociated atoms recombine in the gas, they do so 
in proportion to the statistical weights of ortho- and para-states. Rela- 
tively pure para-H2 can be prepared in H2 cooled to near absolute zero temper- 
ature. All the para-molecules arrive at the state 2 = 0, and all the 
ortho-molecules arrive at the state I = 1. A catalyst is provided to promote 
transitions to the lower-lying para-state and is subsequently removed. The 
pure para-H2 can then be heated to normal temperatures with essentially no con- 
version to the ortho-states. Incidentally, ortho-para effects occur wherever 
rotations can exchange similar atoms, such as in H20 or CH4 molscule~ as well. 
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observed to have spin 8 = 1. Thus, for the D2 molecule there are six ortho- 

I 1 4.10 NUCLEAR SPIN ENTROPY 

spin states (eq. (4.48b)) and three para-spin states (eq, (4.48~)). The D 
atom is a boson, so the total rotational wave function of D2 must be symmetric. 
This means that the six ortho-spin states are associated with even orbital 
momentum states (2 = 0, 2, 4, . . .) and three para-spin states are associated 
with odd orbital momentum states (2 = 1, 3, 5, . . .). The equilibrium ratio 
of ortho- to para-D2 is thus 

D2 (ortho) 6Qr (even 2) 
= -+ 2 (4.47a) 

D2(paraI 34r(odd 2) T>>0, 

The normal oxygen atom 016 is ah interesting boson because its ground 
state has zero spin. Thus, for the 0i6 molecule, the nuclear spin function is 
ortho with a degeneracy of 1 and the rotational wave function must then be 
symmetric for the total nuclear wave function to be s)-----etric, This means 
that only even-numbered orbital angular momentum states are allowed; this is 
observed spectroscopically in that every other line in the rotational band 
structure is missing. On the other hand, the missing lines appear for 016-017 
spectra. On a classical basis, one would hardly expect this small difference 
in nuclear mass to result in such a totdl effect, and the observed phenomenon 
constitutes a striking example of the importance of quantum effects. The 
spectra of other molecules, such as N:~, also show quantum effects, even where 
the nuclear spin is not zero; the lines of the rotational band spectra have 
alternating intensities in proportion to the ratio of para/ortho species. On 
the other hand, Ni4N15 has equal strength rotational lines. 

The total partition function of a diatomic rotator should, strictly 
speaking, include the nuclear spin degeneracy. For the homonuclear diatomic 
molecule of bosons, 
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which is the same as it was before spin was considered except for the factor 
(28 + 112. A similar factor (28 + 1) (28' + 1) appears for heteronuclear dia- 
tomic molecules (ref. 2), where 8 and 8' are the spins of the two atoms 
involved. Normally, the symmetry factor 112 is retained to differentiate the 
homonuclear and heteronuclear cases, but the nuclear spin degeneracies are 
ignored because spin does not change at practical temperatures and the degen- 
eracy is constant (the factor (28 + 1) (28l + 1) is actually a nuclear spin 
partition function at the limit where temperature is negligible). This con- 
stant factor does not influence any of the thermodynamic properties except to 
change the reference level of entropy and the free energies. For example 
(see problem 1.4, ch. l), 
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i 
i In this case, the nuclear spin degeneracy contributes a constant 

1 R ln((28 + 1) (28' + l)] because of the second term on the right in equa- 
tion (4.52) - referred to as the nuclear spin entropy. The entropy disregard- 
ing nuclear spin is called the virtual or practical entropu. For homonuclear 
diatomic molecules, the subtraction of nuclear spin entropy is applicable only 
if the ortho/para ratio equals its limiting high-temperature value. Otherwise, 
the two sums in equation (4.50) do not approach the same value as half the 
single sum over all states. However, for practical purposes, one can ignore 
quclear spin entra?y, except for H2 and D2 below about 200' K. 
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while a similar expression gives the partition function for a homonuclear 
I I 

diatomic molecule of fermions as i 
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Usually, atoms i n  the  ground s t a t e  have low values of nuclear spin, as 
spins tend t o  p a i r  up i n  the lower energy levels ,  somewhat s imi lar  to  electron 
psriring i n  atomic and molecular s tructure.  A short  list of nuclear spins i n  
ground s t a t e  atoms is given in  t ab le  4.2. - 

TABLE 4.2.- NUCLEAR SPINS OF GROUND STATE PARTICLES 

4.11 POLYATOMIC MOLECULE ROTATORS 

Par t i c l e  e n D~ H~ c12 c13 N14 N~~ 016 Na AZ CZ 

Spin 1 1  1 1 1 3 5 5 
' 2 Z T  T 

Any l inea r  molecule is a two-dimensional ro ta to r  with two equal and 
independent moments o f  i n e r t i a  about the  center of mass and a zero moment 
about the  molecular axis.  Then the  r e su l t s  a re  the  same a s  f o r  the diatomic 
rotator .  However, i n  general, polyatomj c molecules have f i n i t e  moments of 
i n e r t i a  i n  a l l  direct ions.  As f o r  any iS'.gid body, these moments have a vector 
magnitude tha t  l i e s  along the  surface of  a]; e l l ipsoid .  The three perpendic- 
u l a r  axes of  the  e l l ipsoid ,  palled the  principal moments of i n e r t i a ,  a r e  
usually indexed in  the  order of increasing mQments ( I l  s I2 I 1 3 ) ,  sometimes 
i n  reverse order. The f i r s t  convention is  followed here. 

The derivation o f  the  rotat ional  pa r t i t ion  function for  an a rb i t r a ry  
three-dimensional body is a somewhat involved but useful exercise, so it is 
sketched here. Let 41, qp, and q3 be the axes of the  principal  moments of 
i n e r t i a  ( I l ,  I*, and 13) .  The k inet ic  energy of  the  ro ta to r  may be expressed 
as  

where 01, w2, and w 3  a r e  the angular ve loci t ies  of spin about axes q l ,  q2, 
and qs, respectively. The k inet ic  energy is  expressed i n  terms of the  
Eulerian angles 0, 4,  and + shown i n  f igure 4.5, which describe the  orienta-  
t ion  of the  ro ta to r  with respect t o  the  x ,  y, a coordinates of space. 

Note tha t  4 is the  angular veloci ty about the  s axis ,  4 is the  
angular veloci ty about the  q3 axis ,  and 8 is the  angular veloci ty about 
the  nodal l ine.  Take the component of these three independent angular veloc- 
i t y  vectors along the  q l ,  q2, and q j  axes and sum l i k e  components t o  find 

6 6 ein e scn 4 + 6 cos 4 

0 2  = 5 ain 8 coa - 6 sin 4 

w3 = 6 008 e + 



Figure 4.5.- Eulerian angles tha t  define the  position of  the  three principal  
axes (ql, q2, and q3) f o r  the  moment of i n e r t i a  of the  r i g i d  body e l l ipso id  
in  x, 8, and a space; 9 is the  angle between q3  and the  a axis .  The 
nodal l i n e  is the  perpendicular t o  q3 which l i e s  i n  the  x-g plane, and 

is  the  angle between the  nodal l i n e  and the x axis .  The arc symbol- 
i zes  the  plane orthogonal t o  q 3 ;  t h a t  is, the  plane defined by the  axes 
ql and q2; 4 is the  angle between q and the nodal l ine .  Note tha t  some k authors use tka notation a f o r  $, B o r  8, and y fo r  4, and a lso  some- 
times use a left-handed coordinate system in  which the  x and y axes a r e  
interchanged. 

Then the  t o t a l  k ine t ic  energy expressed in  terms of the  Eulerian angles and 
t h e i r  derivatives is 

I' (62 sin2e sin24 + $6 s ine  s in4  cos4 + i2 ~0.24) T s T  

Since the  potential  is zero, t h e  k inet ic  energy expressed i n  these un i t s  is 
the  Lagrangian function L(qi ,k) .  The generalized mownta pi con jugate t o  
the  coordinates q i  are,  by def in i t ion ,  

1 
Thus the  generalized momenta conjugate t o  the  three Eulorian angles a r e  



p )  = 1 1 ( $  s(n2 8  rink 4 + / s ~ n  0 s i n  4 oor 

+12(+ sin2 0 me2 4 - 6 s in  8  s i n  + 03s 4) 

+ 1 3 ( 6  me* 0 + 6 ooe O) ( 4 . 5 9 )  

p8 = I l ( j  s in  6 s i n  4 oor, 4 + B m 2  +) 

-I2(+ s i n  0 s in  4 mu 4 - 4 sin2 0) 

Now the Hamiltonian for a three-dimensional rigid rotator in tenns of the 
Eulerian angles and their conjugate angular momenta can t c  written as 

s i n  2 = 
[ ~ 8  + s i n  a 2 s  9 (P$ -P+ 008 el] 

which can be rearranged somewhat to give: 
r 

This arrangement makes the integrations more straightforward in the phase 
intergral: 

Note that 
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Integration over pe yields a factor 

Similar integration next over p yields the factor 
$' 

Finally, integration over pg yields the factor 

Integration of the remaining integriind, sin 8, over all angles 8, +, and J, 
yields 8n2, Thus, for three-dimensional rotators, the partition function is 

:i *d where the symmetry number o is again introduced to account for the duplica- 
tion in the observably different volume of phase space that occurs when the I orientation vector of molecules with like atoms is inbegrated over all 4r 

1 steradians. The symmetry numbers for some common polyatomic molecules are 
I 
j 

listed in table 4.3, for exL.nple. The most symmetrical molecule in this table 

i is methane with a = 12. Even greater symmetry is possible, sulfurhexafloride, 
SF6, for example, has a symmetry number a = 24. Herzberg (ref. 6) lists a 
  able of symmetry numbers by point groups, which i,s a system designating the , , symmetry of structures according to the mathematics of group theory. The 

I 

I 
point group to which individual molecules belong is then given at various 
places in Herzberg's text where these molecules are discussed. The symmetry 

I introduced when some of the atoms are identical produces degeneracy and limits 

I 
the number of rotational energy levels observed; the more unsymmetrical the 
molecule, the more levels are observed. Although symmetry effects change the 
absolute level of entropy, they do not affect the contribution of rotational 

i 
t motions to the equilibrium energy or specific heat per mol. 
i 
i 
J 

The characteristic rotational temperature defined by equation (4.64) is 

I A quantity that is normally the order of lo0 K or less. 

Table 4.3 also gives values of ~otati~nal constants, bond angles, and 
! 
i bond Lengths (ref. 7) for the polyatomic molecules listed. Just as for 
I Table 4.1, the molecules are assumed to be composed of the mast ccmmon atomic 
1 



P.EPRODUCIBITA OF THE 
ORIGINAL P A W  IS POOR 

TABLE 4.3.- ROTATIONAL CONSTANTS FOR SOME POLYATOMIC MOLECULES 
C , 

Rotational constant, cm'l Bond angle, deg Interatomic Symmetry 
Molecule I dista ce number 

2a A I3 C d,  1 a 

0-C-0 0.3902 180 1.162 2 
S-C-S .lo92 180 1.554 (C-H) 2 
H-C-N 1.478 180 1.064 (C-N) 1 

N-N-0 0.4190 180 1.126 (N-N) 1 
1.19 1 (N-0) 

H /("H 27.88 14.51 9.285 105.0 0.9568 2 

D/O\ D 15.38 7.25 4.835 105.0 ,9568 2 

H R s h  10.37 8.991 4.732 92.3 1.334 2 
0 

0' ' 0  3.553 0.4453 0.3947 110.8 1.278 2 

ONS\ 0 2.024 ,3442 .2935 119.6 1.433 2 

H-C-C-H 1.177 180 1.208 (C-C) 2 
1.058 (C-H) 

H. 
1iS-O 

9.410 1.295 1.134 1 1 8 (HCH) 1.12(C-H) 2 
1.21 (C-0) 

NH3 9.94 9.94 6.24 106.8 (HNH) 1.014 (N-H) 3 

CH4 5.249 108.0 (HCH) 1.093 (C-H) 12 

CH3CZ 5.097 0.4434 0.4434 110.5 (HCH) 1.781 (C-CZ) 3 
1.113(C-H) - - 

isotopes, and the constants given obtain for the ground vibrational state. 
Values. for other isotope configurations can also be found in reference 7, as 
well as some values of B e ,  ae, and de which obtain at the potential minimums. 

4.12 ROTATIONAL ENERGY LEVELS OF NONLINEAR MOLECULES 

The classical approximation for the rotational partition function is 
usually adequate for polyatomic molecules, and this requires only knowledge of 
the three moments of inertia, I l ,  12, and 13. However, these three moments 
must be deduced from the spacing of rotational energy levels observed by the 
spectroscopist. In the general case, the three moments are all unequal, the 
molecule behaves as an asymmetric top, and the rotational energy levels follow 
a very complex pattern. Deducing the moments is an involved process in this 
case, and this specialized topic is not pursued here. However, many molecules 
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i of the moment of inertia ellipsoid. The rotational energy constants A,  B, 
i and C are defined as 
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possess considerable symmetry and can sometimes be treated exactly, or 
approximately, as symgletric tops, in which case the rotational energy levels 
follow much simpler patterns. The symmetric top results also serve t o  give a 
qualitative concept of the relations that exist between the rotational energy 
levels and the moments of inertia in the more general case of the asymm~tric 

, In accord with the convention adopted above (I1 1 I2 1 13), the rotational 
! constants are given in the order of decreasing magnitude. I-. 

" I 
<,,%,. " T  . , , s 
- ,  

Several limiting cases are of interest. A spherically symmetric top is 
'ki one where all three moments of inertia are equal (Il = I2 = 13). A prolate 

symmetric top has one smaller moment of inertia and two larger equal moments 
(I1 < I2 = 13) while an oblate synmetric top has two equal smaller moments and 
one larger moment (I1 = I2 < 13). 

The classical energy of the rigid rotator given by equation (4.53), but 

Case 1. Spherical Symmetric Top, I1 = I2 = 13 I :  

. . i expressed in angular momentum coordinates, is 

The rotational energy can be expressed as 

where P is the total angular momentum. This quantity is quantized, the wave 
equation to be solved for the eigenvalues is the same as equation (4.29), so 
the solutions are 

, where J is any integer from 0 tom. By convention, J is used for the 
rotational quantum number for polyatomic molecules (rather than 2) and B is 

i used for the rotational constant when a single constant exists. Thus, for i spherically symmetric toys, the energy levels follow the same pattern as for 
! the diatomic molecule. 

1 116 
I 



A rrolecule with equal masses equally spaced in three-dimensional space, 
such as C CZ4, is a spherically syarmetric top. Any very large organic it;ole- 
cule of about equal extent in all three dimensions would also be app-ximately 
modelad by a spherically symmetric top; only, in this case, internal rotations 
of parts 'of the molecule relative to the whole usually occur. Such molecules 
are not then rigid bodies, and the internal angular momenta couple to the rota- 
tion of the whole molecule to present a very complex pattern of rotational 
energy levels . 

Case 2. Prolate Symmetric Top, Il < I2 = I3 

Again, let the total angular momentum be quantized as in equation (4.68). 
The principal axis 1 is now a singular axis of symmetry, and the projection of 
P on this axis takes quantized values: 

where K i~ an integer taking values from -J to d ,  the exact counterpart of 
the quantum number m used in equation (4.30). Ti~us, 

and the rotational energy in equation (4.53a) becomes 

The (2J + 1) degenerate levels of the spherically symmetric top are now 
split into (J + 1) different levels, each with a degeneracy of 2 except when 
K = 0. Since A > B, the perturbed energy levels all lie above the principal 
level BJ(J + 1) by amounts proportional to the squares of the integers K. 

Methylchloride, CH3CZ, is an example of a prolate symmetric top 
(A = 5.097 cm" l, B = C = 0.4434 cm' l) . A molecule such as 03 has two larger 
moments of inertia that are nearly equal (A = 3.55 cm'l, B = 0.445 cm'l , 
C =  0.395 cm'l). In this case, the molecule behaves almost as a prolate sym- 
metric top, and a useful first approximation is to average the two nearly 
eaual rotational constimts : 

The energy levels are in this case approximately given by 

but the levels with K # 0 are closely spaced doublets. Mass distributions 
that are cigar-shaped, rods, discus-shaped, and flat circular plates are 
examples of prolate symmetric tops. Note that linear molecules (Il =0,i2=13) 



are a special case of the prolate symmetric top. In this case, the energy 
levels are independent of K and K is eliminated as a necessary quantum 
number. 

Case 3. Oblate Symmetric Top, = I2 < I3  

Agaic, the total angular momentum is quantized as in equation (4.68). 
Now, however, the principal axis 3 is the singular axis of spmetry, and the 
projection of P on this axis takes the quantized values: 

Thus, in this case, 

and the rotational energy levels are 

In this case, the energy levels have a pattern similar to the prolate symmei'- 
ric top except that it is inverted; a11 perturbed levels differ from the prin- 
cipal level &r(J + 1) by amounts proportional to K ~ ,  although in this case 
lying below the principal level since B > C. 

Ammonia, NH3 
Ct6.24 cm-l). A 
inertia (A = 10.37 

, is an example of an oblate symmetric top (A = B = 9.94 cm'l, 
molecule such as H2S has two nearly equal smaller moments of 
cm-I, B = 8.991 cm'l , C = 4.732 cm'l) and therefore behaves 

almost as an oblate symmetric top. Again, a useful first approximation in 
this case is to average the two nearly equal rotational constants: 

The energy levels are approximately 

Again, the levels with K # 0 are closely spaced doublets. 

Mass distributions either doughnut-shaped or ring-shaped (such as benzene 
molecules) are examples of oblate symmetric tops. Derivation of the relations 
that exist between masses and bond angles in the more general triatomic mole- 
cule case is given as the following problem. 



Problem 4.8: Show that  a nonlinear, sywletric 
triatomic molecule of the type Y-X-Y (fig.  4.6) 
has the  mments of iner t ia :  

where m l  i s  the mass of the end atoms, m2 i s  the 
mass of the central atom. d is the bond distance 
between the central  atom and the  end atoms, and the 
angle between these bonds i s  2a. Whether Ia or  Ib 
i s  the smaller thus depends on th i s  angle. The bond 
length and angle can be determined from the mohents 
of iner t ia  i f  these can be f i t  to  the observed 
rotational energy levels Figure 4.6.- Nonlinear symmetric 

triatomic molecule; interatomic 
distance d, included bond angle 20, 
mass of end atom ml , mass of cen- 
tral atom mp; - - - axes 
throug5 center of mass. 

Note that  a particular angle exists.  tan a /m2/(hl  + m2), such tha t  Ia = Ib = I , /2 .  I f  the  bond angle i s  
close to  t h i s  angle, as it i s  for  HzS, the triatomic molt.11e behaves approximately as  an oblate syme t r i c  top. 
I f ,  on the other hand, the bond angle 2a i s  near 0 or n. the molecule behaves as a prolate symetr ic  top. In the  
former case, I ,  = 0 and Ib = 11,, while, i n  the l a t t e r  case. I = 0 and Ia = I,. A t  angles rather different than 
e i ther  of these l imits o r  the particular angle arctan A&, the molecule behaves as  an oblate syme t r i c  
top i f  ml = m2 as for 03,  or  as  an asymmetric top i f  ml and m2 a re  rather different a s  fo r  820. Molents of 
iner t ia  and bond angles fo r  some typical triatomic molecules are  given in table 4.3. 

Problem 4.9: Show that  the s y r e t r i c  XY3 mlecule  has two equal moments of iner t ia .  Let d be the  X-Y bond 
distance and B be the angle between the X-Y bond and the axis of symmetry. F i rs t ,  l e t  B = 90. and show that  
Ia = Ib = Z I C  fo r  the planar molecqle case. Next l e t  the mass of the  X atom, my, be i n f in i t e  so tha t  it is 
located a t  the center of mass, and show that  the  moments are  3ml& sin2 B and 3mld2[1 - (1/2)ein2 01, where ml 
i s  the  aoss of one Y atom. What i s  the angle 8 where the  molecule changes from prolate t o  oblate spherical top? 
Finalry, show that  the moments fo r  arb i t rary  masses are 

Calculate the rotational constants for  NH) when 6 = 68. and d = 1.014 i. 

Case 4. Asymmetric Top, II < I2 < I 3  

In this case, there are 2J + 1 distinct energy levels for every value of 
the rotational quantum number J, and the pattern of levels is more complex 
than for symmetric tops. If any two moments of inertia are approximately 
equal, the pattern is similar to that of either a prolate or an oblate symmet- 
ric top, with the K # 0 lines split into closely spaced doublets as mentioned 
above. If none of the moments are nearly equal, the energy level pattern is 
distributed above and below an average energy: 



In the general case, the pattern can be quite irregular. As an approximation, 
the energy levels can be taken to be an average of oblate-like top levels and 
prolate-like top levels 

where r is an index that runs from -J to J and i and j are .indexes such 
that the lowest levels of EObz  and Epro are averaged for the lowest energy 
(r = -J), the next to lowest levels are averaged for the next level (T=-J+1), 
and so on. The levels Eobz and Eppo are given by 

I Therefore, the indexes T, i, and j are related as 

. - --- I If (A - B) = (B - C), the pattern is approximately symmetrical; otherwise, the 

i 
pattern is unsymmetrical. The average energy for a given J is given by 
equation (4.83) in either case. 

The H20 molecule is an example of a rather asymmetrical top rotator 
(A = 27.88 cm'l, B = 14.51 cm'l, and C =  9.285 cm-l), with an asymmetrical 
pattern about the average levels %(J + 1) since (A - B) # (B - C). Because 
the degeneracy of all rotational lines is removed for the asymmetrical top, 
the H20 rotation-vibration bands form a closely packed multitude of levels 
distributed across a major portion of the infrared spectrum. Consequently, 
the earth's atmosphere is opaque to the peak black-body radiation at the 
earth's mean temperature, the solar energy received by the earth is effec- 
tively trapped and does not reradiate into space and the earth's temperature 
is maintained at a level habitable for our form of life. 

Figure 4.7 shows the types of rotational energy level patterns obtained 
with the different configurations discussed above: spherically symmetric top, 
oblate symmetric top, almost oblate symmetric top, asymmetric top, almost pro- 
late symmetric top, and prolate symmetric top. The energy is given in units 
of as defined in the figure legend for the different cases, so that the 
principal lines fall at the same point on the energy scale, J(J + 1). Often 
the energy levels given by equation (4.84a) and (4.84b) are diagrammed on an 
absolute energy scale; then the levels in equations(4.84) are indicated as a 
simple average of the corresponding lowest pair of levels, next lowest pair, 
and so on. Recall that each level of the symmetric tops has a degeneracy of 
2 except for K = 0, which has a degeneracy of 1. This degeneracy is illus- 
trated in figure 4.8 for levels up to J = 3 for (2/3)A = B = (3/2)C, which is 
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roughly l ike the H20 molecule. The levels predicted by th is  simple averaging 
cannot be expected t o  have high accuracy, of course, but they do give a real- 
i s t i c  idea of the spacing and synnnetry of the pattern and they are often suf- ' ficiently accurate t o  use in  calculating parti t ion functions. I f  the 
differences A - 8 and B - C are more unequal, the pattern becomes more asym- 
metrical. For higher values of rotational quantum number dB the l ines from 
different J p u p s  overlap and produce a very complex spectrum that is tedi- 
ous t o  unravel. An approxi~ration often used i n  th i s  case is t o  assume that 
the 2J + 1 different levels are randomly distributed in  the interval between 
the minilnuor level i n  equation (4.84a) and the maximum level in equation (4.84b) . 

J a Jr i ; 
: 3- . . - a- *- - -4 - :- -1 = -21 

m- - a  - - #.a - I., 
-4 w - '4 

-* 0 S 
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Figure 4.7.- Rotational energy level patterns for polyatomic molecules. Total 
quantum number, J; projection of J on singular axis of symmetry for sym- 
metric top, K; integer index for l ines of asymmetric top, r ( - J  (: .r < J ) .  
Type I ,  spherically symnetric top (A = B = C), also linear molecul~ 
(A =, B - C), B = B; Type 11, oblate symmetric top (A = B > C), B = 8 ,  
(B - C = (1/10)B for pattern shown); Type I I I ,  almost oblate symmetric top 
(A B > C), = (1/2)(A + B& (B- C =  (1/10)8 for pattern shown); Type-IV, 
asymmetric top (A > B > C), B = (115) (A + B +C), (A - B B - C 3 (1llO)B 
for pattern shown); T D ~  V, almgst prolate symmetric top (A > B = C), 
5 = (112) (B + C), (4 - B (1llO)B for pattern shown) ; and Type VI , prolate 
symmetric top (A > B = C), z= B, ( A  - B = (l/lO)B for pattern shown). 
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Figure 4.8.- Rotational energy level pattern obtained for asymmetric top 
by averaging the oblate top and prolate top approximations. 

I 4.13 EQUILIBRIUM ENERGY AND SPECIFIC HEAT OF RIGID ROTATORS 

The equilibrium rotational energy of a collection of rigid rotators is 
given by 

The partition function of the two-dimensional rotator is proportional to T, 
so the equilibrium energy is then 

Ep (two-dimensional rotator) = RT (4.86a) 
. , 

On the other hand, the partition function of the three-dimensional rotator is 
I 
i proportional to T~'*, and the equilibrium energy is then 



This iq an example of equipartition of energy, (1I2)RT being allocatri to 
each of the available degrees of freedom at equilibrium. The specific heats 
are just the derivatives &/&: 

Cv (two-dimensional) - R (4.87a) 

Problem 4.10: Develop u u l y t i c  expressions for the rot8tfonal energy, the specific heat, 8nd the entropy for a 
tnacatod ri&d rotator with uxim quantum number 2' given by equation (4.338). 

4.14 CONCLUDING REMARKS 

The steady-state wave equation for a two-particle system can, in the 
absence of external field effects, be decoupled into two independent wave equa- 
tions, one describing the kinetic energy of the center of mass and the other 
describing motion of the two particles relative to the center of mass. If the 
two particles are bound together by a potential, as in a diatomic molecule, 
the second wave equation describes the rotational and vibrational motions of 
the molecule. 

In many molecules, the amplitudes of vibrational motion are rather small, 
and to a good approximation the rotational motions may be modeled as a rigid 
rotating top, Diatomic molecules and linear polyatomic molecules are special 
cases of prolate synnnetric tops and, in this case, the energy levels and rota- 
tional contributions to the thermodynamic properties can be analyzed quite 
rigorously. The polyatomic molecule generally rotates as an asymmetric top; 
in this case, the energy levels are more difficult to model exactly, but the 
pattern of levels can be obtained as an average of the prolate-top and oblate- 
top patterns. The center of these patterns can be accurately placed, so the 
rotational contributions to thermodynamic properties can be assessed with 
reasonable accuracy. 

Perhaps the most significant contribution gained from the quantum model 
of rotators is an appreciation of molecular symmetry effects and the role of 
nuclear spins. These effects do not normally influence the thermodynamic 
properties of gases appreciably, except for very light molecules at very low 
temperatures and except for shifting the zero level of entropy. However, 
nuclear spin effects can strikingly affect the pattern of observed energy 
levels and the transition* allowed between them. 
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CHAPTER 5 - DIA70MIC MOLECULE VIBRATIONS 

The rotational energy is separated from vibrational errergy in the 
two-particle, steady-state wave equation and to first. cr;lertthe solutions are 
harmonic oscillator functions. The clarsical phase integral gives a partition 
function valid only at high temperature, but the qux-.tun swmnation is easily 
performed to gfre analytic expressions for all the thermodynamic properties of 
the harmonic oscillator at all temperatures. Anharmonic effects are treated 
by small perturbation solutions to the wave equation and the relation between 
energy levels and a series expansion of the perturbation potential is derived. 
Next, the quantum solutions for an oscillator with a Morse-function potential 
are derived in terms of Laguerre polynomials. 

5.2 INTRODUCTION 

The vibrational amplitudes of many molecules are so small that the 
coupling with rotational motion is relatively modest and to a good approxim- 
tion the vibrational mode may be treated independently. As gas temperature is 
increased, a considerable amount of energy can be stored in the vibrational 
mode, which contributes to th2 internal energy, specific heat, and other thermo- 
dynamic propc-'ies of the molecule. Quantum effects are even more prcnounced 
for vibrations than for rotations because the energy spacing between levels is 
often large compared with normal thermal energies kT. Thus a classical model 
would be totally inadequate in this case and, for most purposes, a quantum 
anode1 must be used. In this chapter, we treat the diatomic molecule vibra- 
tions and follow with a treatment of polyatomic molecule vibrations in the 
next chapter. 

5.3 DIATOMIC MOLECULE WAVE EQUATIONS 

The steady-state, two-particle wave equation in center-of-mass 
coordinates (derived in ch. 4) is found to be 

For the rigid rotator, the potential V(r) was taken to be zero; now to 
account for the potential that results from the combination of nuclear coulonb 
repulsion and the attractive electronic energy: 



where 21 and 22 are the nuclear 
charges involved. The electronic 
interaction E, is understood quali- 
tatively, and the general shape of 

. , the combined attractive potential 
and the short-range nuclear repul- 
sion is shown in figure 5.1. Unfor- 
tunately, Lccurate quantitative 

. . solutions for this potential are not 
generally available for multielec- 
tron atom interactions. However, we 

0 
can proceed with the empirical obserc 

ra 
INTERATOMIC DISTBNCE, r 

vation that most diatomic interac- 
tion potentials are very neariy 
harmonic near the potential m i n i m ,  

~ i ~ u r e  5.1.- Qualitative shape of and the lower energy states of vibra- 
interatomic potential in Ciatomic tional motion at least can be 
molecules. The potential is minimum modelled reasonably well with the 
at re, it is steeply repulsive at harmonic oscillator potential 
shorter distances, and it asymptot- 
ical ly approaches the dissociation V(r] w2 (r - 3)2 
energy D at large r. The shape (5.3) 

is approximately quadratic in (r - re) 
near the minim. where o is the circular frequency 

of the oscillator, 2nv, and re is 
the equilibrium interatomic distance. Solutions for harmonic oscillators are 
considered first and anhamionic effects are treated subsequently? 

First the rotational motions are separated from equation (5.1) by 
assuming a separable wave function in spherical coordinates: 

1 Substitutinh squation (5.4) into (5.1) and mltiplying by r2/$, one obtains 

(2." R s+ + [  6 Y e i n  0  L ( . i n ~ s ) +  30 s i n  0  *]=l a42 (5.1) 

The first bracket in equation (5.5) is a function only of r and the second 
is a function only of 8 and 4. Each must be constant, one the negative of 
the other, for the equation to remain valid far arbitrary r, 0, and 4. If 
the second bracket is equated to -Z(Z + I), Y is then the same spherical 
h a m n i c  function found in chapter 4 to be the solution for the r;.3;-e function 
of a rigid rotator with energy ( 2  + 1 2 2 r 2 .  The equatioyt for R may be 
expressed accordingly as 



I The diatomic oscillator thus behaves in a manner analogous to a single 
I 
I particle of mass t moving in an effective pc' ntial V(r) + t(Z + 1)fi2/2ur2. 

Strictly speaki~g, there is a coupling between the vibrational and ,otational 
energy and the wqve function is not truly separable. However, to a first 
approximation, the vibrational coordinate changes so little from its equilib- 
rium val?re re that the rotational energy term may be replaced witt the con- 
sta1.t 2 (2 + 1)X2!2ure2. TO this approximation, the oscillator solutions are 
independent of rotational quantum number 2 and, by suitable choice of the 
reference potential level, the differential equation for the oscillator wave 
function R has the same form for any value of 2: 

where Ez is the energy above the reference level Z(2 + 1)fi2/2ure2. Note 
that this is a one-dimensional, harmonic-oscillator wave equation. The three- 
dimensional oscillator wave function is YRIr, as given by equation (5.4). 

5.4 CLASSICAL HARMONIC OSCILLATOR 

z I The limiting, high-temperature value for the partition function of the ! , I  , 
i 

.- i harmonic oscillator is the phase integral ! 

where the Hamiltonian function is the oscillator energy expressed in linear ! 

momentum p and distance units r as i 
I 5 

2 : 
H = ~ + $ ( p  211 - pel2 (5.91 i .  

i 
The integrations in equation (5.8) are easily performed to give 1 

rr, 
kT T 

.I---)- = - (5.10) 

where ev is the characteristic temperature 
I 

fiu 
ev = (5.11) 
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Unlike the rigid rotator case, where the characteristic temperature was very 
small, the characteristic vibrational temperature % is rather high for m y  
diatomic gases (see table 5.1). Thus, the sumation over quantized staces is 
not accurately reproduced by an integral, as the classical model demurds, and 
the quantum solution is needed for temperatures of practical interest. 

TABLE 5.1. - CHARACTERISTIC VIBRATIONAL TEMPERAlllRBS 
FOR DIATOMIC MOLECULES 

(Based on w =we-w-+0.75 ode, data frola ref. 1) 

Btr =Xw/k, O K  

.c. 
5.5 QUANTIZED HARMONIC OSCILLATOR 

Transform the oscillator coordinate to 
41 

so that the harmonic potential in equation (5.3) becomes y2/2 in units of 
6w. Then equation (5.7) becomes 

This equation can be put into the form of Hermite's differential equation by 
P 

4 
factoring out the asymptotic behavior as y2 >> 2~/&, 

i 

'r Let R = e-~~'~H(y). Then equation (5.13) transforms to 
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d 2 ~  - -  ; 2gg+[2(2)- I J Z - 0  (5.14) 
4.12 

A series solution with a f i n i t e  number of terms ex i s t s  f o r  t h i s  equation 
(refs. 2-3), one of the  Hermite polynomials HU (y) , provided the  energy is an 
odd half-integer number of quantum un i t s  &; t h a t  is, 

E - = v +  + (5.15) I 

Au 4 

where the  vibrational quantum number v  is any integer from 0 t o  -. 
Note tha t  the  ground vibrational s t a t e  contains 1/2 quantum uni t  of 

vibrational energy. This occurs because the  potential  minimum tends t o  local- 
i z e  the  osc i l l a to r  position and a f i n i t e  amount of energy must be retained t o  
s a t i s f y  the  uncertainty principle. For the r i g i d  ro ta tor ,  no localizing poten- 
t i a l  was present and the  ground rotat ional  s t a t e  could then be zero energy. 

The first few Hennite polynomials a re  

Ho = 1 
\ 

Hl = 2y 

R2 = 4Y2 - 2 

H 3  = 8y3 - 129 

H4 = 16y4 - 48y2 + 12 

k km (-1) v! 
'0 ' C ( v -  2)0!k! (2y)V-2k 

L. 

+ (5.16) 

k= 0 

where IG, is  the  larges t  integer l e s s  than o r  equal t o  2 This list may 
also  be extended by means of a recursion relat ion:  

J 
4t 

flu+ 1 - 2yHu + ~ V H , , ~  = 0 (5.17) 

which is derived in  any standard text  on quantum mechanics (refs .  2,3). 

The one-dimensional, quantized harmonic osc i l l a to r  wave function now : 

becomes 

R, = flu e -3 2/2 1' Hv (Y 1 (5.18) 
ui 

129 

g? (4 8: f $ 



where Nu is a normalizing constant 

SO that the integral of R~~ over all space is unity: 

2 
Evaluation of the integral of e-y av2 is again available in standard quantum 
mechanics texts (refs. 2,3). The total three-dimensional, oscillator-rotator 
wave function, as given by equation (5.4), is 

5.6 THERMODYNAMIC FUNCTIONS FOR'HARMONIC OSCILLATORS 

The degeneracy of each vibrational level for harmonic oscillators is 
unity and the partition function is a simple geometric progression: 

where the energy levels are defined relative to the ground-state vibrational 
energy kev/2, the zero point energy referred to in section 1.11. When 
T << eV, the partition function approaches unity and the diatomic molecule 
behaves as a pure rigid rotator. When T >> Bt;, QV -t T/Bv, the classical 
limit given by the phase integral, equation (5.10). 

The vibrational energy of an equilibrium qistribution of harmonic 
oscillators is 

where E0 is the molar zero point energy, ReV/2. The contribution of the 
vibrational modes to specific heat and entropy is 



*G;. i; 

-LW.. , , ,* ,, L 1 
* .  , . 

. * v e  .. . . w '  -- u.rc4 .---s nrr -,r/ 
"'xy"Urr_,. L . 1, !-. h --___.I- 

&V R(%,/~T)~ G v = =  (5.23a) 
sinh2 (ev/2T) 

(5.23b) 

Figure 5.2 shows the variation of 
Ev/RT and Cv/R as a function of 
T/av. When T << 8 the energy 
becomes Rev/2 or &/2 (the zero 
point energy for N molecules) 
and the specific heat vanishes. 
When T >> eV, the energy 
approaches RT and the specific 
heat becomes a constant ' R, the 
classical limit for two degrees of 
freedom that depend on quadratic 
terms in the Hamiltonian (see 
section 1.10). 

The partition function for a o I 2 3 
DIMENSIONLESS TEMPERATURE, 1% 

real molecule with a finite number 

-: 

vibntional levels bounded Figure 5.2. - Energy E and specific heat the dissociation energy D does 
Cv of a harmonic oscillator with not increase without limit, as characteristic temperature eV = h/k. does the harmonic oscillator model Vibrations are unexcited when T < <  ev with an infinite number of vibra- and provide two classical degrees of tional levels. A qualitative idea 

of this limit is provided by a freedom when T >> Bv. 

truncated harmonic oscillator 
model with maximum vibrational 
quantum number D/ke : 

I This limit is the order of 20 or more for many diatomic molecules. At usual 
temperatures of interest, the correction for truncation of vibrational levels 

I is small and is less important than corrections for anharmonic effects and 
I vibration-rotation coupling. However, it is well to be aware that a finite 

limit for the vibrational partition function does exist for real molecules, 
rather than the limitless function deduced from the harmonic oscillator model. 
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5.7 ANHARMONIC EFFECTS 
+ - 2 -  j 
",; ,,,; 

, ~ 
." . 

h. - 
kc' : i The intermolecular potential is not purely quadratic, of course, and " *, .. . i small deviations from the harmonic oscillator levels occur in real molecules. ": 

The observed energy levels are empirically fitted by spectroscopists to a _. . J '  i 
1 I' . I series expansion of the form (refs. 4 and 5) 
..* *-* 
2. 3 .  ' 

@ c ' where xe is typically the order of and ye, when determined, is gener- 
:, * . .,.--I 
r ally many orders of magnitude smaller yet. Higher-order terms are usually not 

i warranted despite the magnificent precision of spectroscopic data. The zero 
4 
I 1 level of energy in this expression is the value at the potential minimum, 

I hence the subscript s on w, x ,  and y. In older spectroscopic notation, the 
I zero level is the ground-state eigenvalue. The energy funct'on is then 

* 
C i 

! 
expressed as 

and the subscript o denotes the appropriate reference energy. 

Problem 5.1:  Derive the relations between the spectroscopistls constants woe so, yo and L)g. xu, ye. Shw 
that 

4 f One can see that the differences between the two sets of constants are small. 

f 

. 1 The higher-order terms in the eigenvalues of energy appear when a series 
expansion is used for the potential function, known as the Dunham potential 

i 

*. 

1 Fitting higher-order terms than y4 to the observed energy levels becomes 
i 
I very involved and rarely do the data warrant retention of these higher-order 
i terms. To illustrate the method, retain only the term in y3; the next order 
i 
i t e n  can be included by following the same procedures, although the process is 
i more involved. In either case, solutions to the Schroedinger equation are 

obtained by a perturbation method. 
2 i 



5.8 PERTURBATION SOLUTIONS FOR THE STEADY-STATE WAVE EQUATION 

The steady-state Schroedinger equation is 

If the Hamiltonian caa Le expressed as the sum 

where solutions to the wave equation, $kO, are known for the Hamiltonian 
the perturbation method can be used. Since solutions to the Schroedinger equa- 
tion must form an orthogonal set (ref. 2), which can be normalized, the known 
solutions $ko obey 

The unknown functions yn can be expanded in terms of the orthonormal set of 
functions $kO: 

Substitute equation (5.27) and (5.30) into (5.26) to obtain 

Then, with equation (5.28), 

Now multiply both sides of equation (5.32) by ($,'I* and integrate over all 
space. Let the matrix elements Uij denote the integrals 

Then 
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and the perturbed energy is 
, k2*b- ", . ,; 

"<% .' < -  . z 
: +..: , '  
.,: a .: , En En _ _... 

%k 
( +$ .. ;:;::.*.. r O + F G u n k  (5.35) 
2.. ,,f ':' 
f, ;.,>, . , . . . Thus far, no approximation whatever has been involved. Now if HI is small, ,"; , . I .  
i -  . :. un 3 $ 2 .  and to first order the coefficients in equation (5.30) are a,,,,z 1, 

b ,% / -. I- % << 1. The first-order perturbation result (refs. 2.3) is thus 

4 b ?" For the anharmonic oscillator for which H 1  = ahwy3, the first-order correc- ' 
id. 

a -*-.- - / tion vanishes by virtue of symmetry, 
.-. 1 

i 
+ .  i and the next order terms must be considered. Approximate expressions for the 
? i coefficients W, are obtained by multiplying equation (5.32) by ($to)' and 

i integrating over all space: 
I ,: ? ,  

. ! , C a n k ~ z k  ' a n t  (En - E l o )  (5.38) . 1 k i 

.i 
$. &*.; Again, where 9 = 1 and all other coefficients are of order much less than 

i unity, the coef icient is given to terms of first order by 
i 

! 
! Thus, equation (5.35) can be expanded to 
; 

i Equation -(5.40) is a general result for any slightly perturbed system. For 

I the case of interest here, a slightly anharmonic oscillator, En0 - EkO = (n-k)ho 
and Ukn = Unk. Equation (5.40) thus becomes 

(5.41) 

I . '  
The matrix elements Unk are evaluated using the recursion relation 

between Hermite polynomials given by equation (5.17). Repeated application of 
the recursion relation leads to 
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Since the harmonic oscillator wave functions are orthogonal, the matrix ele- 
ments Unk all vanish except for k = n + 3 ,  n + 1 ,  n -  1, and n - 3 ,  The 
nonvsnishing matrix elements, 

become 

The perturbed energy in equation (5.41) thus becomes 

If the small zero point shift in energy level (7a2/16) is neglected, this 
takes the same form as the spectroscopic notation, equation (5.24), when 

Some typical values of xe are shown in table 5.2, and the difference 
7a2/16 is truly negligible. We conclude that a cubic anharmonic t e n  in the 
potential can account for the observed first-order departures from the har- 
monic oscillator energy levels. However, a quartic perturbation must be 
included to account for the next order term with coefficient l(e (eq. (5.24)). 
This next term is derived in a way similar to the derivation just presented. 



TABLE S.2.- ANHARMONIC COEFFICIENTS FOR DIATOMIC MOLECULES 

i 5.9 MORSE FUNCTION POTENTIAL 

Molecule 

N2 
02 
CO 
NO 
H2 
C z 2  
8112 

h. The anharmonic effects in the lower vibrational levels can be accounted 
for adequately by an expansion of the potential function in a power series 
such as equation (5.25). But near the dissociation limit, such expansions 

.: t 
g with a practical number of terms 
a ,  . will diverge from the true potential. 
t Figure 5.3 shows a harmor,ic poten- 
d Gz... tial adjusted to fit the observed 

x3 vibrational frequency w, and an 
anharmonic cubic potential fit to 
the observed u and with a maximum 

g at the dissociation limit. The 
cubic correction fit to the observed 

F, 

.L NNARD-JONES 6-12 POTEWIAL lower energy levels gives a maximum 
considerably less than D. Both 

i functions diverge from the correct 
asymptotic value, the dissociation 
energy, at large values of the inter- 

1 

< 5 6 
atomic distance. An empirical func- 

DIMENSONLESS I-TOMIC DISTANCE, X @ ) ~ ~ V - ~ ,  I tion that does have the proper 
asymptotic behavior and that can be 

Figure 5.3. - Approximate diatomic closely fit to the observed lower 
molecule potentials. (a) Harmonic vibrational energy levels is the 
oscillator potential that fits the Morse function (ref. 6) : 

$ observed vibrational frequency (sol id 
curve). (b) Cubic anharmonic poten- 
tial that fits the observed w and v = ~ ( 1  - e-"12 (5.46) 

has a maximum at the dissociation 
energy D (dashed curve). (c) Morse where the distance variable x is 
potential that fits the observed w 
and asymptotically approac' es D at 1 /2  
large interatomic distances (broken 
line curve) . (d) Lennard-Jones 6-  12 
potential that fits observed w and (5.46a) 
asymptotically approaches D (dotted 
curve). 
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0.00749 
.00963 
,00605 
.00909 
.0304 
.00707 
.00508 
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This function is also shown in figure 5.3 and, although it closely approaches 
the asymptotic limit at somewhat larger interatomic distances than observed 
for most diatomic molecules, the Morse potential gives a more realistic model 
of upper vibrational levels than the harmonic or power series potentials, An 
interesting feature of the Morse potential is that exact solutions to the 
Schroedinger equation can be found (ref. 6 ) .  Transform the oscillator wave 
equation (eq. (5.7)) to the coordinate x in equation (5.46a) : 

i 
d2R 20 E - +  a = ~ 2  liw $1. = o (5.47a) 

r 

Substitute the Morse potential in equation (S.47a) and let the constant 

d2. - + ,2(% - 1 + 2e'x - B (5.47b) 
&2 

A further transformation to w = e'x leads to 

- +  (5.47~) 

To transform this into the Lhguerre equation, let 

R ( w )  . = e-a(2cw) b/ 2~ (0) (5.48) 

It follows that 

wLv+ (b+ 1 - 2a)L1 + (a2 -aZ)w+ 2a2 - a @ +  1) + $  (a2 E -  D a2+e)]L= 4 0 

(5.49) 

For the expression in brackets, the term in w vanishes if a = a  and the 
term in w'l vanishes if (EID) = 1 - b2/4a2. Finally, let z = 2 w .  Then 

-s/ 2 b12L(a) R(z)=a z (5.48a) 
? 

where L ( a )  is the solution to the Laguerre equation: 

d 2 ~  + (b + 1 - z )  5 " + ( a -  
2, 

(5.49a) 

t 
This equation has a finite polynomial solution if the coefficient of the last 
ten, a - (b + 1)/2, is an integer u .  Thus, 
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and the allowed energy levels are 

The factor h / 4 D  is compared with the observed coefficient xe in table 5.2. 
Moderate agreement exists between the two; the Morse correction to the har- 
monic oscillator energy leve.; is typically 10 to 20 percent too large. 

The allowed energy levels are a monatonically increasing function of 
quantum number v up to (v + 1/2) 1 2Dlhw. Beyond this, the energy doubles 
back and finally becomes negative; the levels with decreasing energy as u 
increases are regarded as unreal and, in this sense, the Morse potential leads 
to a finite number of levels, approximately the number actually observed. 

The solutions to equation (5.49a) are the generalized Laguerre poly- 
nomials : 

The index b need not be integral, but v must be. The complete Morse 
oscillator wave function is then 

where b is given by equation (5.50). The constant Ct, is again derived by 
normalizing the integral of R ~ , ~  to unity. In terms of the variable z ,  

Thus, 



The integral is evaluated using the moment-generating functions for the 
Laguerre polynomials : 

(S. 57%) 

~ = b  (1 - ulbrl 

Consider the integral I defined by 

Expansion of the factors in the last expression for I yields 

- b + ?. - 1 
(uy)b+zlJyk - t: I.! 

j r k r  Z=O 



4 .. 
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To evaluate the norma\iz!ng integrals, choose those terms where j + k, 
1 + 2: = n, and r = e - n + b and compare coefficients: 

b + z -  'I' + terns with unym 
n=o n + m  

n+b J- e-'~~-l(L:+~)l d. + other terns (5.60) 
n*o [(fi+b>!I2 

I (. 
q. - '  . .  ..-- el inspection, one sees that *. * 

-: . 
! and the normalizing constant in equation (5.56) becomes 

Since wave function solutions to Schroedinger's equation must be 
orthogonal, the overlap integral of Morse functions w:th differsnt quantum 
numbers v and v' must vanish. Except for a constant multi~lier, these over- 
lap integrals are 

where .6 is the integer v - v l ,  b = Z a - 2 v - 1 ,  a n d c o 2 a - 2 v f - l = b + 2 8 .  This 
orthogonality may be demonstrated by use of the moment generating function: 

along with the moment-generating function U(u,s) in equation (5.57a). Con- 
sider the ? ntegral 



! $+ 
' j %  

We are interested in those coefficients where the exponent on y is r + 6, 
that is, the coefficients of terms with (~y)*~&. But upon expansion of the 
last expression for It in equation (5.64) there are no such terms. The 
expansion of the factor (1 - u16-l is a finite polynomial with u6-I as the 
highest power of u, whereas the expansion of the factor zj2&/ (1 - y)6+1 is an E- infinite polynomial with y26 as the lowest power of y. By inspection then, 
the integrals described by equation (5.63) all vanish and the Morse wave func- 
tions are indeed orthogonal, as required. 

D 
5.10 OTHER EMPIRICAL POTENTIAL FUNCTIONS 

t -  

f: p. 
A number of empirical potential functions other than the Morse f~r~ction, 

.~ which alsc approach the correct asymptotic limit, have been considered. For 
y example, the potential 

k' a with a, b, n, and m positive, possesses a short-range repulsion, a long- 
.$,. 
T* range attraction, and asymptotically approaches the dissociation energy D at 
$ large r. For neutral atom diatomic molecules such as N2, the attractive 
% potential is primarily associated with induced-dipole, induced-dipole inter- 
@ g action, and n should then be about 6. For ionized diatomic rlolecules such 
E as N;, the long-range attrxtion is for a charge-induced dipole pair for which n 
g: should be about 4. Ionic binding occurs in highly polar mclecules such as 
., > P;: IiCZ, for which the long-range interaction is Coulomb-like and n = 2. The 
3 
$.: 

widely used Lennard-Jones potential lets n = rn = 6. The twelfth power repul- 
Si' 

8; 
sion is a fair approximation to the very steep repulsions that. actually occur 

c. 
5. 
.A"- 
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.,. . 
c.. i'--.. I 
.. . between atoms at short range. In some cases, an exponential repulsion is an 
, . ! 
. , !  even better approximation, so the potential 

- i is often used. The Lennard-Jones potential fit to the observed vibrational 
frequency o at the minimum is also shown in figure 5.3. 

P r o b l w  5.2:  Show that  equation (5 .65)  with t h e  required shape near the potent ia l  minimum 
V rTe (y1,12/2) (r - r012 can be expressed a s  .. . - 

where 

For n = m. 

and t h e  Lennard-Jones potent ial  i s  

The accuracy of empirical potentials may be assessed by comparing the 
calculated energy levels with the spectroscopically observed levels; the con- 
stant parameters of the potential are then adjusted until the best accuracy is 
obtained for a given group of levels, usually the low-lying levels near the 
ground state. This was relatively easy for the Morse function because ana- 
lytic expressions for the wave functions and the energy levels were obtained. 
However, analytic solutions have not been found for oscillators with poten- 
t ials given by equations (5.65) or (5.66) . In this case, the Schroedinger 
equation would need to be solved numerically with the energy level assumed, 
and this adjustable parameter varied until the solutions to the partial differ- 
ential equation match the required boundary conditions, namely, that the wave 
function and all its derivatives must vanish as the oscillator coordinate r 
becomes very large. These predicted eigenvalues of energy would then be com- 
pared with the measured values to assess the accuracy of the empirical 
potential function. 

An easier method of assessi~g empirical potential functions than 
presented above is available. The true potenti?! may be deduced from the 
measured energy levels by a method called the Ryfierg-Klein-Rees (RKR) method 
(refs. 7-9). This need be done only once for a given molecule; then all types 
of empirical potentials may be compared with the RKR potential. In figure 5.4  
for H2, the Morse potential, the cubic anharmonic potential, and the Lennard- 
Jones potential, all giving the best fit at the potential minimum, are com- 
pared with the accurate Rydherg-Klein-Rees potential for this molecule. The 
Morse function is the best of these approximations at large values of r. 
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The Rydberg-Klein-Rees 
potential may be derived only up to 
the point where the energy levels 
are measurable. For some molecules, 
such as H q  and 02, for example, 
these levels are known nearly to 
the dissociation limit. The final 
few levels may be approximated rea- 
sonably well by extrapolation 
(ref. 4). In such cases, the 
empirical potentials are unneces- 
sary for the accurate evaluation 

pu2 '2 of partition fmctionss since these DIMf3SIONLEES lNlERATOMlC DISTANCE, x=(= If-fa) 
may be calculated merely by summing 
over all measured energy levels. Figure 5.4.- Interatomic potentials for However, for many molecules, the Hz. Rydberg-Klein-Rees potential upper vibrational levels are not (solid curve), cubic anharmonic readily observable for various rea- 
sons. Upper levels may not be pop- potential (dotted curve) , Morse 

potential (dashed curve) , and ulated at reasonable temperatures, Lennard-Jones potential (broken 1 ine for example; then the spectro- curve). scopist will not see these levels 
in absorption. In emission spectra, 
the upper levels may disappear because of predissociati~n, and transitions to 
the upper levels of the lower state may be weak because of the small Franck- 
Condon factors involved (ref. 4). Finally, the energy levels grow very close 
together near the dissociation limit and line-broadening effects may smear the 
spectrum together and make it impossible for the spectroscopist to identify 
the upper states. The N2 molecule is an example where this uncertainty in the 
upper states has existed. The extrapolation of measured N2 vibratiorlal levels 
was so uncertain that the dissociation energy of N2 was in doubt for many 
years (see discussions of this problem by Herzberg (ref. 4) and Gaydon (ref. 5)) 
until it &as finally established with a nonspectroscopic method by 
Kistiakowsky et al. (ref. 10). In such cases then, the Rydberg-Klein-Rees 
potential determined to the highest observable vibrational level is the stand- 
ard used to compare the various empirical potentials having the proper asymp- 

1 
totic limit. The best of these potentials may then be chosen to evaluate the 
remaining vibrational levels. 

5.11 RYDBERG-KLEIN-REES POTENTIAL 

he Rydberg-Klein-Rees (RKR) potential is the standard by which other 
potential models are judged (as discussed above), but it also serves another 
purpose, namely, to provide the most accurate vibrational wave functions when- 
ever these are needed. These wave functions are obtained by successive numer- 
ical integration of the Schroedinger equation with the RKR potential function 
until the eigenvalues are found. Such functions may be needed to determine 
perturbation transition matrix elements that result from either collision 
perturbation or photon perturbations. The latter are the so-called 



Franck-Condon factors that 
determine the strength of various 
rotation-vibration spectral bands 
(ref. 4), for example. For these 
reasons, it seems appropriate to 
review here the method of deriving 
the RKR potential. 

OBSERVED Consider the function S 
wBRAflONAL- that is half the area bounded by 
ROTATBNAL the total energy of the oscillator 
ENERGY LEVEL and the interatomic potential 

(fig. 5.5): 

INTERATOMIC DISTANCE, r 
The effective potential for rota- 

Figure 5.5.- Function 2S used to tional quantum level 2 is, from 

evaluate Rydberg-Klein-Rees poten- equation (5.6), 
tials (area bounded by total energy 
E and the interatomic potential V). K V (r) = V, (r) + - (5.69) 

r2 

where Vo(r) is the potential when Z is zero and K is Z(Z + 1)h2/2u. Let 
functions f and g be defined as 

Thus, if f and g can be determined for each measured energy level, the 
turning points of the potential at that energy are given by 

1 The area S may be defined in terms of an action integral I that is 
i 

four times the kinetic energy integrated over time: 
! 



Some authors define the action integral es I/2r, but this merely changes the 
constants in the following expressions. The term I must be expressed as a 
function of r. Since drldt = [2(E - V)/M] I / * ,  

Then the area S may be expressed as 
I 

where the potential V is now considered a function of the action integral I 
and the quantity K. The upper limit of the integral in equation (5.75), 
Iv, is obtained from Planck's first statement of the quantum principle 
(ref. 2), that is, the area swept out by the trajectory of the system in 

8 ,  

. ,"  ,. . 
momentum-coordinate space should equal an integral number of quantum cells of 

1 size h: 
3. , 

g The area is increased by h/2 to account for the residual motion of the 
ground state oscillator. This correction is strictly applicable only for the 
harmonic oscillator, but diatomic molecules are very like harmonic oscillatorz 

3: 
4 in the lowest levels, so the correction is sufficiently accurate. Trajec- 

tories in momentum-coordinate space are shown in figure 5.6 for a quantized 
harmonic oscillator and a slightly anharmonic oscillator, indicating how the 
trajectories gradually diverge while the swept-out areas remain integral 
multiples of the quantum cell size h. 

One can now see how to determine S graphically . Plot (Ev - ~ ~ t )  as 
a function of vt + (1/2), where the vibrational quantum number vt takes 

i values from 0 to v. Then the area under this curve is multiplied by 
p' h/(3~p)"~ to get Sv. The process is repeated for different values of Ev, 

but the same rotational quantum number I ,  to obtain the function S (Ev, 
3' 

constant K), from which the slope f (eq. (5.70)) is determined. Similarly, 
h 
' repeat the process for the same Ev but different K or 2(2 + 1)/2p to 
$ g obtain the function S (constant E v ,  K), from which the slope g (eq. (5.71)) 
.?.,-, 3 is determined. Then the turning points rl and r2 for a given Ev and K are 
F found from equations (5.72) and (5.73) . 
$ p 

. For low vibrational levels (n I S ) ,  there are insufficient points for !$ 
3 accurate graphical integration, so a series expansion or Dunham function, 
p., 
A equation (5.25), would normally be fit to these lower levels and the RKR 
,:; 



DIMENSIONLESS 
MOMENTUM, 

Figure 5.6.- Quantized oscillator trajectories in momentum coordinate space. 
(a) Harmonic oscillator (solid curves). Momentum intercepts are 

pv = t (2vEv) = Y2ufiu) 'I2 (v + 12, coordinate intercepts are 

rv - re = t (~E/uu~) 'I2 = + (26/~~) l 2  (v + , trajectories are the 

ellipses 

and the swept-out areas are 

(b) Anharmonic oscillator (dashed curves). The intercepts grow increas- 
ingly different from the harmonic oscillator intercepts and the trajec- 
tories grow increasingly non-elliptic as the quantum number v increases, 
but the swept-out area increases as integral multiples of the quantum cell 
size h.. i 

i 
method would then be used to determine the turning points for the higher 
energy states. However, Vanderslice et al. (ref. 11) use an analytic method 
to obtain S in which the energy is allowed to be quadratic in I and K ;  they 
find good accuracy is maintained for all levels. 

Rydbergts method (ref. 7) is essentially the graphical one outlined above. f 
i 

In Kleints procedure (ref. 8), the integration of equation (5.68) and the 
differentiations of equations (5.70) and (5.71) are carried out numerically; 
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the process is laborious and care is necessary to obtain accurate results. 
Rees (ref. 9) showed that solutions for f and g are readily obtained by 
analytic means when Evz is expressed as a quadratic relation in I and K .  

Tho usual expression for energy used by spectroscopists is 

(5.77) 

where w, a, B, and D are in cm'l . Define 

Then 

Coupling between rotational levels is included (finite a) since it is 
required for accurate results. (This coupling effect is discussed in 
chapter 8 . )  A single set of values for the constants w, x, a, B, and D will 
not fit the energy over the entire range of levels, of course, but the total 
range can be represented adequately by a series of such quadratics. 
Vanderslice et al. (ref. 11) use a relatively rapid procedure that fits these 
constants by least squares to four adjacent observed energy levels. The quad- 
ratic relation in equation (5.80) is then used to analytically evaluate the 
integral S and the differentials f and g. The H2 molecule is one of the 
most sensitive tests for accuracy of the method, and good results are obtained 
for this molecule by the Vanderslice method. Figure 5.4 shows the interatomic 
potentials for H2 obtained by Vanderslice et al., the Lennard-Jones function, 
the Dunham function, and the Morse function. Obviously, the Morse function is 
the best of the three empirical potential Snctions at large r .  

5.12 THERMODYNAMIC FUNCTIONS FOR ANHARMONIC OSCILLATORS 

Simple analytic formulas for the partition function of anharmonic 
oscillators are normally not derivable, so the function must be evaluated by 
numerical summation: 



where Ev is the energy of level v deduced from spectra or given by an 
approximate expression (such as eq. (5.24) or (5.51)) and urn is the maximum I 

level allowed by the dissociation limit. The equilibrium vibrational energy 
and specific heat of a collection of anharmonic oscillators must also be 
evaluated by numerical summat:ions : 

I 

The entropy due to vibrational modes is just 1 
i 

Similarly, all other thermodynamic properties are assessable in terms of the 
above value of the partition function and its derivatives. 

Figure 5 .7  shows the ratio 

cfl: 1 
' of the partition function for a 

1 Morse oscillator with 
/ f iwI4D = 0.009 (a rather typical 

value as shown in table 5.2) to 
the partition function for a 
harmonic oscillator, plotted as 

o)* a function of the dimensionless 
temperature parameter &T/&u. 
The ratios of the Morse oscil- 
lator vibrational energy and 
vibrational specific heat to 
the harmonic oscillator values 

I 
0 I 2 3 

are also shown. Because the 
DIMENSIONLESS TEMPERATURE, X = kT/fiw energy levels are more closely 

spaced in the upper quantum 
states than for the harmonic 

Figure 5.7.-  Ratio of Morse oscillator to oscillator, the partition 
harmonic oscillator values (superscript function, energy, and specific 

f 
*) of the diatomic molecule partition heats are all larger than the 
function, energy, and specific heat for harmonic oscillator values. For 
h w / 4 D  = 0.009.  TIX XU up to 3, the corrections 

range to about 7 percent fcr the 
partition function, 10 percent for energy, and 21 percent for specific heat. 
The correction to the partition function is approximately linear with tempera- 
ture. An analytic expression for this linear correction is derived in chap- ! t 
ter 8 along with some additional linear corrections for vibration-rotation 
coupling effects. The latter are found to be the same order as the correc- ! 

tions for anharmonic vibrational level spacing so, for economy, these 
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corrections are treated together at that time. The percentage corrections to 
vibrational energy and specific heat are rather large at low temperatures, but 
only in the range where their contribution to total energy and specific heat 
is negligible; the corrections are significant only at temperatures sizable 
fractions of 8wlk and larger. 

5.13 CONCLUDING REMARKS 

Harmonic oscillator solutions adequately represent the vibrational mode 
of most diatomic molecules in the first few vibrational levels, and small- 
perturbation corrections account for the anharmonic effects observed in the 
next few levels. At higher levels, anharmonic effects become sizable. If 
analytic expressions are desired, the Morse oscillator model gives a very con- 
venient solution that describes the qualitative features of these effects very 
well with little sacrifice in accuracy. Empirical potential models other than 
the Morse function can be devised which have the proper asymptotic limit and 
fit the true potential near the minimum, but these are generally less conveni- 
ent to use because analytic solutions to Schroedingerts equation are not 
available. Also, comparisons with the RKR method of evaluating the true poten- 
tial function show that the Morse function is generally a better approximation 
than other empirical potential models at large values of the internuclear 
distance. 
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CHAPTER 6 - POLYATOMIC MOLECULE VIBRATIONS 
6.1 SUMMARY 

Polyatomic molecule vibrations are analyzed as harmonic vibrations along 
normal coordinates. The energy eigenvalues are found for linear and nonlinear 
symmetric triatomic molecules for valence bona mcbdels of the potential func- 
tion with arbitrary coupling coefficients; such m.odels can usually be fitted 

' 

to observed energy levels with reasonably good accuracy. Approximate normal 
coordinates for the H20 molecule are discussed. Degenerate vibrational modes 
such as occur in Cop are analyzed and expressions for Fermi resonance between 
close-lying states of the same symmetry are developed. The bending modos of 
linear triatomic molecules are expressed in terms of Laguerre polynomials in 
cylindrical coordinates as well as in terms of Hermite polynomials in 
Cartesian coordinates. The effects of large-amplitude bending such as occur 

h in the C3 molecule are analyzed, along with anharmonic effects, which split 
the usually degenerate bending mode energy levels. Finally, the vibrational 
frequencies, degeneracies, and symmetry properties of XY3, X2Y2, and XYI, type 

C.  
molecules are discussed. 

6.2 INTRODUCTION 

The vibrations of atoms in polyatomic molecules can be approximated by 
the harmonic oscillator model as well as in diatomic molecules. To decouple 
the various modes, the energy must he expressed Ln normal coordinates which, 
by definition, are those coordinates in which cross-product tenns vanish in 
both the kinetic and potential energy functions. 

6.3 NORMAL COORDINATES 

Let the position of n nuclei in the molecule be aiven by Cartesian 
coordinates of each nucleus relative to its equilibrium position (fig. 6.1): 

The kinetic energy can be simply expressed as 



3n 
T = mi4i2 (6.2) 

%= 1 

while the potential energy may be 
expanded in a Taylor series about the 
equilibrium position as 

x2 

V =  ve +~(x) aql eqi 

+ C b;jqiqj + . . * 
i,j 

(6.3) 

x3 y4 

/ where the coefficients bid are the 
second partial derivat ivas 

X4 ETC. 

Fi;ure 6.1.- Cartesian coordinates 
for displacement of atoms from 
their equilibrium position in 
polyatomic molecules. Choos? the reference energy so that 

V, = 0. At equilibrium, the potential 
is a minimum so the derivatives 

I 

(aV/aqi), all vanish. T e n s  of higher order than second can be neglected for 
sufficiently small vibrational motion, and thus V may be approximated as 4 

; 
i 

The Lagrangian equations of motion then take the form 

Generally, these equations are not separable. However, a linear trans- 
formation to a new set of coordinates can always be found such that cross- 
product terms in both equations (6.2) and (6.5) will vanish. Thesz are the 
normal coordinates Qk: 



, i 
',, "P 
' *a 

3 .. 

. .. . in which kinetic and potential energies take the form -. . 

Then the Lagrangian equations of motion becomes 
li 

I 

i a& + bMk = 0 , k = 1. 2, . . ., 3n 
b for which the solutions are 

where the constants Qk are the initial amplitudes. Each normal coordinate 
Qk cndergoes harmonic &tion with frequency uk, independently of the motion 
in the other coordinates. The normal mode corrcept is a useful approximation 
to the extent thrt truncation of the potential energy to include only second- 
order terms is valid. For large-amplitude vibrations, the higher-order terms 
become important; then the motion cannot be completely described by a set of 
nonnal mode or Larmonic motions. 

Problem 6.1: Shad that if the Wniltonian is a sun of t e m s  t!?t are ench a functxon of only one coordir!.tc 
a k :  

the wave function is separable with the form 

where the Individual mode wave functions *k are solutions to 

and the total energy is the sum 

Show thrt where the kinetic and potential energies are the harnontc orclllator expressions in normal 
coordinates (cqs. (6.9) and (6.10)). the t e m s  in the Haniltonian ore given by 

where P:, i s  the gencralized~monentun conillgate to the ~OOrdllldtc l:L, the partial Jerlvativt. of the I..rpr.rnp~;ln 
L tor T - V )  with rcrl. ct to Qk: 

: 73 



-, Then the wave equation for 6 k  hecomcs 

" Tnnsfolr to the diw?nsionless normal coordinate 

- + 

+ and show that the nave equation for #k becones 

for which the solutions are the same harmonic oscillator wa-~e functions 

found for the diatomic oscillator. 

Generally, finding normal coordinates by diagonalizing the kinetic and 
--. potential energy expressions is tedious. However, the equations of motion can 

be used directly to find the allowed circular frequencies wk.  Let all ampli- 
tude constants Qko vanish except one, say Q i , .  Since the q values are 
related to Q values by the inverse linear transform to equation (6.8); 

each q k  coordinate will also vary harmonically with the same frequency w 
when only one normal mode is excited. Let 

iwt 
q k  = , k = 1 , 2 ,  . . . ,  3n 

where qko = $kiGo Substitution of these expressions for q into the k 
equations of motion, equation (6.7), yields the set of equations: 

Equation (6.15) is a set of 3n simultaneous equations to be solved for the 
3n unknowns, qk , .  From the thecr) of linear algebraic equations, a solution 
exists only if the following determinant vanishes (refs. 1 and 2): 



This relation provides an equation of degree 3n to solve for the allowable 
values of w and is known as the secular equation. 

In deriving equation ;6.  : 5) , a coordinate system (fig. 6.1) that 
diagonalized the kinetic energy expression, equation (6.2), was chosen. How- 
ever, this is not essential. Sometimes it is most convenient tc use symmetry 
coordinates that do not diagonalize either the potential or kinetic energy 3; 
expressions. In a general linear transformation of coordinates, the kinetic 
energy becomes a quadratic expression of the form 

where the coefficients aij represent the second partial derivatives of 
kinetic energy with respect to the generalized velocities Gi and 4 that is, 

j ' (a2T/ai($ a i j ) .  In this case, if all normal coordinate amplitude constants are 
allowed to vanish except one, and equation (6.13) for the coordinate qk  is 
substituted into the equations of motion, 

The secular equation to be solved for the allowed roots of w is, in this I 

general case 



Often the molecule possesses some symmetry, in which case many of the 
off-diagonal elements vanish for any plausible model of the potential energy 
function. Then the secular equation breaks up into a set of lower rank deter- 
minants that can be solved more easily. Of course, if the normal coordinates 
are once found, in which kinetic and potential energy functions have the form 
of equations (6.9) and (6. lo), respectively, then the allowed values of w 
are determined most simply from equation (6.12b) . As examples, consider 
linear symmetric triatomic molecules (such as C02) and nonlinear symmetric 
triatomic molecules (such as H20). 

6 .4  LINEAR SYMMETRIC TRZATOMIC MOLECULE XY2 

The linear symmetric triatomic molecule configuration is shown in 
figure 6.2. Symmetry occurs when the atoms at the end positions are identical. 

The bond distance betd2en adjacent atoms is d .  a----@----@- s, Consider their origins Cartesian at the coordinate equilibrium systems position with of 

( 0 1  the atoms and the x axes along the molecular 
axis. Define the coordinates ql  and q2 as 

2(m, /m2) S2 
the deviation from the equilibrium distan~es 
between adjacent atoms : 

@ ---- & ---- = 52 - X l  (6.17a) 

and the coordinates $, and @b as the bending 
* 1 / ~ 2 ) ~ 3  angles in the sy and xz planes, respectively. 

, For very small deflect ions, 
( C )  1 

@, = 2 ( ~ 1  +Y3 - 292) (6.17~) 
Figure 6.2. - Normal coordi- 

nates for linear symmetric 
triatomic molecules. 

1 
$b = a (21 + 23 - 222) (6.17d) 

I 
Since the potential energy function is not known, a plausible model must 

be postulated. The value of the model is then assessed by the accuracy with 
which it can be fit to spectroscopically observed energy levels. A model that r 
can be reasonably well fit to at least the lower vibrational levels of linear 

vJ symmetric triatomic molecules is the following: ' I  

The physical interpretation of this model is that k is the force constant 
for the X - Y  bonds, 6 is the force constant giving the effect of the inter- ; i 
action between the two bonds, and E is the force constant for the bending of 
the molecule. One can anticipate the interaction constant 6 to be quite 
small and, as a first approximation, the simple valence bond model assumes 



that it vanishes. However, three different harmonic vibrational frequencies 
are observed experimentally and at least three independent interaction con- 
stants are required of any potential model before it can be matched exactly 
to these observations. (Additional constants would be required to match the 
observed anharmonic effects, of course, just as for the diatomic molecule.) 
Therefore,a finite value will be retained for 6 to illustrate how the normal 
mode solutions for triatomic molecule vibrations vary with this parameter. In 
terms of the Cartesian coordinate system defined in figure 6.1, the potential 
model in equation (6.18) becomes 

while the kinetic energy in these coordinates is 

Grouping like terms in the potential equation makes the secular equation (6.16) 
somewhat easier to set up: 

The secular equation is found to be the product of three 3 x 3 m. ces, one of 
which is 

while the other two are the identical matrices: 



{ 
5 The determinant equation (6.21a) may be solved by subtract ing t h e  t h i r d  column 
[ from t h e  first coluinn and then adding t h e  first r o w  t o  t he  t h i r d  row. This 

- ~ operation r e s u l t s  i n  
. . 5 - 

f o r  which the  so lu t ion  is  
... . 

The allowed roots  f o r  w2 a r e  found by s e t t i n g  each f ac to r  equal t o  0: 

The t h i r d  root  i s  found by solving the  determinant equation (6.21b). Again, 
subtract ing the  th i rd  column from t h e  f i r s t  column and then adding the  f i r s t  
row t o  the  t h i r d  Tori, one obtains  



"I- .*% 
.y'--$=b-*,* % <. . - > - . - + . *. . , . . . . 

5 :  

, 

for which the solution is 

- .  : $: The nonvanishing root in equation (6.21f) is &. 
@ 

.-?- 
f l  The allowed values of w found in equations (6.22a, b, and c) are given 

.- . the subscripts 1, 2, and 3, according to accepted usage. The circular fre- 
quency wl is associated with symmetrical stretching of the molecule, w2 is 
associated with the bending motions, and w3, with as~.cti.ical stretching. 
Normally, these frequencies are the observables, and the force constants that 
fit the potential model in equation (6.18) to these frequencies are 

Problem 6.2: Show that when masses m l  and "2 are given in .W (atomic mass unit, M = 1.660x10-~~ gla) and 
frequencies w l ,  w 2 ,  and w s  in wave numbers, the force constants k, 6, and c are given in units of 4n2Afc2 or 
5 . 8 8 9 ~ 1 0 - ~  dyne-cm. Find the force constants for CO: for which w l  = 1337 cm-I, w2 = 667 cm-I, and w 3  a2349 em-'. 

Note that if 6 = 0, 

Find the force constants for C02 which fit the potential model with 6 = 0. (Two values are obtained for k - 
one for the observed value of 0 u 1 ,  another for the observed value of w 2 . )  Compare these results with the values 
found above when d is given a finite value. 

Normal coordinates may generally be rather complex expressions, but for 
linear triatomic molecules they are rather simple transformations of the 
Cartesian coordinates shown in figure 6.1, which leave the center of mass 
unchanged. The linear molzcule therefore provides a good example of the use 
of normal coordinates, without too much algebraic detail. 

6.5 NORMAL COORDINATES FOR LINEAR SYMMETRIC TRIATOMIC MOLECULES 

A set of normal coordinates S1, S2, and S3, which leaves the center of 
mass unchanged and causes the cross-product terms to simultaneously vanish in 



t he  k ine t i c  energy function and i n  t h e  po ten t i a l  model i n  equation (6.18), is 
shown in  f igure  6.2 f o r  t he  l i n e a r  symmetric t r ia tomic  molecule. (S1 is a 
symmetric s t re tch ing  mode, S3 is  an asymmetric s t r e t ch ing  mode, and S2 is a 
bending mode.) Two independent bending modes, S20 and S2b, occur which a r e  
orthogonal t o  one another; one mode i s  shown i n  f i gu re  6.2(b) i n  the  plane of  
t he  f igure ,  the  second motion occurs i n  a plane perpendicular t o  t h e  f igure .  
Mult ipl icat ion of  t he  coordinate. by constants w i l l  not change the  e s sen t i a l  
r e ln t ions  involved, provided the  center  of  mass is unchanged. For example, 
t he  bending modes could be equally well described by a coordinate change f o r  
the  end atoms of  e i t h e r  m2S2 o r  m2S2/2ml i f  t he  center  atom motion were 
taken t o  be 2mlS2 o r  S2, respect ively.  

The Cartesian coordinates r e l a t i v e  t o  t he  equilibrium pos i t ions  shown i n  
f igure  6.1 a r e  r e l a t ed  t o  t he  normal coordinates by 

Thus, the  k ine t i c  energy i n  normal coordinates becomes 

The coordinates i n  equations (6.17a t o  d) a r e  

and the  poten t ia l  energy function i n  equation (6.18) thus becomes 



C . -. ? .-1 The normal mode frequencies can be obtained by inspecting equa- ; l "  
3 tions (6.25) and (6.27) since ey are simply the ratio /akk of the con- i 

% :' 
stant coefficients in equations (6.9) and (6.10) (see eq. @.12b)) : 

*! 
4 .  I ,  

These results are the same as obtained from solutions to the secular equation 
(eqs. i6.22a to c)). This example shows that the relations between the force 
constants and the vibrational frequencies can be found most easily if the 
normal coordinates are found first. Note, however, that the approximate nor- 
mal coordinates depend on the potential model chosen. 

Problem 6 .3:  Note that  only four o f  the  nine Cartesian coordinates i n  f igure  6 . 2  are  independent; t h e  
r e m i n i n g  f i v e  arc  dependent because the  center  o f  mass must remain f ixed .  Choose sl, xo, yl, and zl a s  the  s e t  
of independent coordinates, then f i n d  the  remaining Cartesian coordinates i n  terms o f  t h i s  s e t .  Also show that  
t h e  normal coordinates are  i n  terms of t h i s  s e t :  

6.6 NONLINEAR SYMbETRIC TRIATOMIC MOLECULE XY;! 

The nonlinear symmetric triatomic molecule is particularly important J 

because the ubiquitous H20 molecule is a member of this class. In this case, i IY, 

the normal coordinates are not easy to derive, but symmetry coordinates can be 
found in which the solution to equation (6.16a) becomes relatively easy. More Y 

than one set of such symmetry coordinates is possible. For example, the coor- 
dinates diagramned in figures 6.3(a) to (c) are used here, but the coordinates 
shown in figures 6.3(a1) and (bl) are alternate choices for the coordinates in 
figures 6.3 (a) and (b) , respectively. 

The choice of potential function is not an obvious one for the nonlinear ; f 

molecule. If the angle a is large enough that the end molecules are much 
farther from one another than from the central atom, a potential of the same 
form as equation (6.18) should model the molecule reasonably well: 



[ 2 ~ , / m 2 ) s I  cos a 

2(ml /m2)s2 sin a 4 2(m1 /m2)si A 
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(b) 

(J-p(rnl/m2p3 sin a 

' I "b 
Figure 6.3.- Symmetry coordinates for 

nonlinear symmetric triatomic 
molecules. 

Physically, this represents a harmonic 
restoring force directed along each 
valence bond direction with a coupling 
term and a single harmonic bending 
mode in the plane of the three atoms. 
The angle ( represents the deviation 
of a from its equilibrium value. 
The distance between the end molecules 
is 2d s i n  a. For H20,  a is observed 
to be 52.S0, so the distance between 
the two H atoms is 1.587 times greater 
than the distance between the H and 0 
atoms, and equation (6.29) should 
represent a reasonably good potential 
model. The angle a is generally 45' 
or larger in real nonlinear symmetric 
molecules (see table 4.3) ; therefore, 
equation (6.29) is a reasonably good 
choice in any such case for a poten- 
tial with three independent force con- 
stants that can be fit to the three 
observed fundamental frequencies. 

The coordinates q l ,  q2 ,  and ( expressed in the symmetric coordinates in 
figure 6.3(a) to (c) are 

2m 
ql‘(l+$ m s 2  +(2 s in  e cos S2 (6.30a) 

2ml 
92 

z (1 +- coe2 a)sl - (1 - - 'L sin2 s in  a cos a)s2 (6.30b) 
"2 "2 

2 2ml 
= - a[(F s in  a cos a LC1 + 1 + - sin2 n S2 ) (  I 

Thus the potential in symmetry coordinates becomes 



V -  [(l +a m2 ooa2 a)2(k + 6) + 2 ( 2  a i n  a 008 a)2r]S12 

+[(%.in a m a  a + + + n  m2 

1 
The kinet ic  energy i n  terms of the  symmetry coordinates becomes 

T = m l  [(L +a m2 c.2 a ) i 1 2 + ( 2  s i n  a coa a )s 

The p a r t i a l  derivat ives a; and b i  defined by equations (6.28) and 
(6.4). respectively. a re  eas i ly  $educed iy inspection of equaf ions (6.31) and 
(6.33) t o  be 

l l = + c o a  a y ( k + d )  +)(%sin  a coa 

b12 = I L 1  =(? s i n  a m a  .)[(l +a "'2 me2  .)(k+ 6) + 2( l+% .in2 .)r] 

2 
b22 * (2 s i n  a COB a) (k + 6) + 2 

1 2 
b 3 3 = ( I + K a i n 2  a) ( k - 6 )  

* 

a12 = a 2 1  = m l ( a  a i n  a cos a) 
"'2 



The remaining second derivatives bz3 and a23 vanish because of the choice of 
symmetry coordinates. Thussthe secular equation (6.16a), for the allowed 
circular frequencies, becomes 

. ti., C LU. .. i 
! 

>.. 4 - --. - - ,..-T.4 .- * '> . - .- ---I. 

'i . 

One root of the equation is immediately apparent 

. .  , d ' ,.. 
.' $,t, 

:.A !2?4 . . 
. . 

Note that this reduces to the same value given by equation (6.22b) for the 
linear symmetric triatomic molecule when a = n/2. The other two roots are 
solutions to the quadratic equation 

I * C, 

' 7  c .  ' , 

In the present case, the coefficients of this quadratic equation are 

The solutions for w2 may be characterized rather simply by the sum and 
product of the roots: 

Again, these are the same expressions obtained for the linear symmetric 
molecule when a = n/2. 

Problem 6.4: The observed fundamental frequencies and bond angles for H20 are w l  - 3652 cmn', 
u1 - 1595 cm'l, w 3  = 3756 cm-I, and 2n = 10Se. Solve for the values of k, 6, and c that fit the potential model 
in equation (6.29) to these values. Show tLat 
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k * 7 . 6 2 ~ 1 0 ~  dyne-cm 

6 = - 9 . 4 3 ~ 1 0 ~  dyne-cm 

c * 6 . 9 7 ~ 1 0 ~  dyne-rm 

Note that the coupling coefficient 6 is negative rather than positive, as for COz. 

Problem 6.5: Another potential model often used is the h a m n i c ,  three-valance-bond model without cross- 
coupling. The deviation from equilibrium distance between the end atoms is 

and the potential in equation (6.29) with d = 0 becomes 

where 

$ This potential model might be expected to be reasonably valid if n is the order o f  n /3  so that the three atoms 

f. are approximately equally spaced. Another constant would be required to fit the three observed frcquencics, of 

F course, but the model would give approximately valid rcstllts if the cross-couplings are all small. 
r 
. . Show that 

I( 
w32 = (1 + 2 eiv2 rn) 

Note that the solution breaks down for .r = n /  slncc the last equation requires that w l  or w2 vanlsh. 
However, for the usual nonlinear, symmctr~c triatomic molecule, L B  is thc order of n / 3 ,  and the results are 
similar to the results in equations ( 6 . 3 6 ) .  (6 .391 ,  and ( 6 . 4 0 ) .  

6 . 7  APPROXIMATE NORMAL COORDINATES FOR H20 

The normal coordinates for nonlinear molecules are not generally aligned 
with the interatomic distance vectors and they are rather involved expressions 
of Cartesian displacements and bond angles. However, a simple limiting case 
occurs when the central atom is much heavier rhan the end atoms, a close 
enough approximation to the H20 molecule to afford a qualitative understanding 
of the vibrational modes in that molecule. In this limiting ccse, the center 
of mass is fixed on the central atom and the normal coordinates become the 
.;me as the symmetry coordinates shown in figlire 6.3 if the mction of the 
central atom vanishes. Then the interatamic bond distances arc 

and the change in bond angle is 

2 
+ = a s 2  



The kinetic energy expressed in these coordinates is 

while the potential energy in equation (6.29) takns the form 
: .  

i 

V z t ?  [ (Sl + ~ 3 )  + (S1 - ~ 3 )  2]  + 6 (S1 + S3) (S1 - S3) + 2 ~ ~ 2 ~  

. (k + 6)s12  + i 2 ~ ~ 2 2  + (k - 6)sS2  (6.43) r 

The approximate normal mode frequencies are immediately apparent from 
inspection of equations (6.42) and (6.43) : 

and the approximate force constants in terms of the observed frequencies are 
t 

These results are the sail:? as obtained from equations (6 .36) ,  (6 .39) ,  and 
(6 .40)  when the mass ratio n t is allowed to vanish; i i :  this case, the 
bond angle a is irrelevant. Results are insensitive to bond angle whenever 
the ratio ml/m2 is small. 

Problem 6.6: S h w  that the approximatt force constants tor H20, obtained by trevting the central 0 r t a  
as infinitely heavy, are 

k % 8.08xl0~ dyne-cm 

6 = - 2 . 3 0 ~ 1 0 ~  dyne-cm 

c = 7.48.10~ dyne-cm 



Observe that the results obtained by this approximation are only about S percent different for k mA r from the 
results obtained in problem 6.4, but the coupling constant d is about twice as large as glven by the more 
acc,.ate treatment. 

6.8 DEGENERATE VIBRATIONAL MODES 

The linear triatomic molecule has two equivalent modes of bending vibra- 
tional motion which have equal energy levels, so these modes are doubly degen- 
erate. The total vibrational energy of the molecule is 

and the total wave function is the product of normal mode wave functions 

where vl, vza,  v2b, and v3 are the quantum numbers for the four nonnal mode 
vibrations and N is the normalization constant (the product of four separate 
normalization factors given by eq. (5.19a)) and yi are dimensionless normal 
coordinates used in problem 6.1: 

The modes wjth equal circular frequencies w2 can be combined to yield 

where 02 represents the total quantum number 

Note that the ground-state energy is ?iw2 for these modes. The degeneracy of 
the state with quantum number v2 is 

corresponding to the number of ditferent ways v2 ,  and v2b can be selected to 
add up to v2 



1 , . A  
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C. 1 0  

ORIGINAL PAC;:. IS POOR . 
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Problem 6.7: Shar that the partition function given by the product of two identical simple harmonic oscilla- 
tor partition functions is the same as the partition function for an oscillator that has a degeneracy (v  + 1) for 
each level. Use the ground state as the zero reference energy level. 

In the  general polyatomic molecule, several  modes of  v ibra t ion  may be 
degenerate and the  energy can then be expressed a s  

where q is  the  number of degenerate modes with the  same c i r c u l a r  .frequency 
w;. The t o t a l  quantum number V i  represents  t h e  sum of  n i  vibra t iona l  
quantum numbers 

and the  degeneracy is the  numb.; f ways .zi pos i t i ve  numbers can he chosen 
t o  add up t o  Vi: 

Complete decoupling between v ibra t iona l  modes occurs only when t h e  poten- 
t i a l  i s  purely quadratic i n  form as  i n  equation (6.5) .  Actually, some anhar- 
monicity is always pre  ,ent , corresponding t o  f i n i t e  t h i rd -  o r  h j  gher-ordei 
p a r t i a l  der ivat ives  i n  the  poten t ia l  function. Then cross-coupling terms 
appear which cannot be made t o  vanish i n  both poten t ia l  and k ine t i c  energy 
expressions by any l i nea r  transformation of  coordinates.  This coupling s p l i t s  
the  energy s t a t e s ,  and the  level of degeneracy g appears a s  g separate  
l irles.  For example, c ~ ~ s i d e r  two equivalent o s c i l l a t o r s  of mass m and 
resonant c i r cu l a r  frequency u which are coupled. The poten t ia l  i s  expressed a s  

whei-e mcL is  a force covstant representing the  e f f e c t  of the anharmonic per- 
turbat ion coupling. In normal coordinates,  



,!is 
while t he  k i n e t i c  energy is 

; 

:.a Solutions t o  t he  equations of  motion a r e  
II- 

d i 

For these normal coordinates,  t he  system is  i n  steady s t a t e ,  with each normal 
4 

mode o s c i l l a t i n g  independently. In terms of  t he  individual o s c i l l a t o r  d i s -  
placements XI and 2 2 ,  the  system appears t o  be i n  resonance, with a t r ans i en t  
surging of v ibra t iona l  energy back and fo r th  from one o s c i l l a t o r  t o  t h e  other:  

Howevor, the  t r ans i en t  appearance of t he  resonance phenomena is  merely an 
a r t i f a c t  introduced by viewing the  system in  o ther  than normal coordinates.  
The t o t a l  system i s  i n  a dynamic steady s t a t e ,  which becomes evident when t h e  
system is  viewed i n  normal coordinates.  

In quantum mechanics, tirc coupled system has t h e  quantized energy leve ls  

where v l  and v2 a r e  quantum numbers f o r  t he  two unperturbed normal modes. 
For small coupling, E << w ,  t h i s  may be expanded t o  

where the  t c t a l  quantum number v = ( v l  + v 2 )  and Z = (u l  - v 2 )  o r  (v  - 2 v 2 ) .  
There a r e  v +  1 d i s t i n c t  leve ls  symmetrically placed about t h e  cent ra l  energy 
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l e v e l  (v+ l ) l iw  assoc ia ted  wi th  t h e  d i f f e r e n t  values  o f  u l  - u2,both p o s i t i v e  
and negat ive ,  which t h e  d i f f e r e n c e  between two i n t e g e r s  t h a t  sum t o  u can 
take.  The spacing between l e v e l s  hw(rz2/w2) is  propor t iona l  t o  t h e  s t r e n g t h  
o f  t h e  coupling f o r c e  constant  c 2 .  The s p l i t t i n g  and degeneracy o f  l e v e l s  
f o r  a doubly degenerate s e t  o f  v i b r a t i o n a l  modes i s  i l l u s t r a t e d  i n  f i g u r e  6.4. 
Usually,  t h i s  s 2 l i t t i n g  is  very s a a l l  f o r  t h e  lower v i b r a t i o n a l  l e v e l s ,  bu t  
t h e  anharmonic e f f e c t s  can become more pronounced i n  t h e  upper l e - . e l s .  

The v i b r a t i o n a l  s t a t e  o f  t r i a t o m i c  molecules, whether l i n e a r  o r  nonl inear ,  
i s ,  by convention, d e s i p v  ied by a b r a e  of t h r e e  numbers (vl , 712, u 3 ) ,  where 
v l  i s  t h e  v i b r a t i o n a l  quantum number a s s o c i a t e d  wi th  t h e  symmetric s t r e t c h  
mode, v2 is  t h e  quantum r mber assoc ia ted  wi th  t h e  bending modes, and vg i s  
t h e  quantum number associazed with t h e  asymmetric s t r e t c h  mode. If t h e  mole- 
c u l e  is nonl inear ,  only  one bending mode i n  t h e  plane o f  tile t h r e e  atoms i s  
involved. However, i f  t h e  molecule i s  l i n ~ a r .  t h e  bending modes a r e  doubly 
degenerate and 0 2  then des igna tes  t h e  t o t a l  quantum number v2a + v2b and 
i s  given a s u p e r c r i p t  121 t h a t  i s  t h e  abso lu te  magnitude o f  t h e  d i f f e r e n c e  
(v2a ' v2b).  That is, t h e  s t a t e  i s  designated by tL3 brace  (vl ,  vhz l ,  v,). 
For example, t h e  (1, 31, 0) s t a t e  o f  C02 i n d i c a t e s  t h a t  one quantum o f  v ib ra -  
t i o n a l  energy i s  e x c i t e d  i n  t h e  symmetric s t r e t c h  mode, t h r e e  quanta o f  energy 
a r e  exc i t ed  i n  t h e  bending modes wi th  two quanta i n  one degenerate bending 
mode and one i n  t h e  o t h e r ,  whi le  t h e  asymmetric s t r e t c h  mode i s  i n  t h e  ground 
s t a t e .  Another s t a t e  wi th  n e a r l y  t h e  same energy i s  (1 ,  33, 0) ;  i n  t h i s  case ,  
a l l  t h r e e  quanta i n  t h e  Scnding modes a r e  i n  one of t h e  degenerate  modes whi le  
t h e  o t h e r  mode is  i n  t h e  ground s t a t e .  The phase angles  o f  c l a s s i c a l  motion a r e  
such t h a t  t h e  31 s t a t e  has  one quantum u n i t  whi le  t h e  33 s t a t e  has t h r e e  
quantum u n i t s  o f  angular  momentum i n  t h e  bending motion. 

6.9 FERMI RESONANCE BETWEEN STATES 

S t a t e s  t h a t  a r e  n o t  degenerate w i l l  a l s o  be coupled t o  one another  by 
anharmonic terms i n  t h e  p o t e n t i a l .  The wave funct ion can then be expressed a s  
a s e r i e s  expansion i n  t h e  orthonormal s e t  o f  wave func t ions  $kO a s  

which a r e  f i r s t - o r d e r  s o l u t i o n s  i n  terms o f  normal coordinates  y< obtained 
when t h e  anharmonic terms a r e  neglected:  

and t h e  ui(gi)  terms a r e  t h e  single-mode harmonic o s c i l l a t o r  wace func t io r  ;. I 

In a c t u a l  p r a c t i c e ,  ocl? those  s t a t e s  t h a t  a r e  very c l o s e  t o  one ano ther  i n  
energy a r e  e f f e c t i v e l y  coupled, and even then only i f  t h e  wave func t ions  have 
l i k e  symmetry p r o p e r t i e s .  The coupling e f f e c t  i s  c a l l e d  Fermi resonance, i n  



Figure 6 . 4 . -  Energy l eve ls  for a doubly degenerate s e t  o f  vibrational modes. 



deference t o  t he  analogy with nearly resonant c l a s s i ca l  osci l la toi-s ,  but the  
word resonance should not be construed t o  imply a time-dependent s t a t e .  The 
coupled s t a t e s  a r e  i n  steady s t a t e  a t  s teady-s ta te  perturbed energy leve ls  and 
with s teady-state  mixed wave functions. Often, only two leve ls  a r e  involved 
i n  any one s e t  of coupled s t a t e s .  In t h i s  case,  Fermi resonance can be i l l u s -  
t r a t e d  by considering a two-state system with leve ls  1 and 2 .  The wave func- 
t i ons  a r e  taken t o  be l i nea r  combinations of t h i  unperturbed wave functions 
q10 and ~ 1 ~ ~ :  

with constant coe f f i c i en t s  a1 and ap. 

Perhaps it i s  appropriate a t  t h i s  point t o  note t h a t  t h e  term "mixed" 
wave function denotes the  approximation i n  which t h e  wave :unction i s  taken t o  
be a l i nea r  sum of "normal" wave functions a s  i n  equation (6.59) o r  (6.61). 
The coe f f i c i en t s  may be constants,  a s  i n  the  s teady-state  problem considered 
here,  o r  functions of time i f  t he  wave functions and energy leve ls  a r e  being 
determined fo r  a time-dependent per turbat ion.  Usually, these c o e f f i c i e l ~ t s  
squared a r e  in te rpre ted  a s  t he  p robab i l i t i e s  t h a t  the  system res ides  i n  a 
s t a t e  represented by the  corresponding normal wwe function. However, note 
t ha t  t he  wave function can be expanded in  any orthcqonal s e t ,  and the  coef f i -  
c i en t s  squared +hen represent the  p robab i l i t i e s  of Leing in  a completely d i f -  
fe ren t  s e t  of so-called "normal" s t a t e s .  For a time-dependent per turbat ion,  
t he  concept of normal and mixed s t a t e s  has more physical meaning i n  t h a t  the  
system i s  required t o  be in  one of the  normal s t a t e s  before the  perturbat ion 
event, and then ends up with ce r t a in  p robab i l i t i e s  i n  one of the  ava i lab le  
normal s t a t e s  a f t e r  the  perturbat ion event. The mixed s t a t e s  a r e  merely 
s t a t e s  t h a t  the  system may take during the  perturbat ion.  In the  present case 
of Fermi resonance, however, we a r e  considering a s teady-s ta te  s i t ua t ion  in  
xhich the  th i rd -  and higher-order der iva t ives  i n  the  poten t ia l  a r e  permanent 
and normal. The so-cal led mixcd s t a t e  i s  the normal steady s t a t e ,  and i E  we 
knew how t o  express the wave functions f o r  these s t a t e s  exact ly,  we would 
descr ibe the  system i n  any one of these s t a t e s  with a s ing le  wave function 
with no concept of nixing whatever. 

The Hamiltonian operator is now taken a s  the  sum go + HI1, where To 
contains t he  domifi.int quadratic terms in the energy which lead t o  the  h&rmonic 
o s c i l l a t o r  solut ions in  terms of normal coordinates (eq. (6.60)),  and H '  
represents  a ~ e r t u r b a ~ i o n  provided by t h ~ h i g h e r - o r d e r  anharmonic terms in  the 
Hamiltonian. Since H ~ $ ~ ~  = E ~ ~ $ ~ ~  and H ~ $ ~ ~  = EpO$pO, where E~~ and E~~ 
a r e  the harmonic o s c i l l a t o r  energies,  t he  Schroedinger equation becomes 

Equation (6.62) i s  f i r s t  multiplied by $lo* and integrated over a l l  space 
and then agair! mult ipl ied by J ~ ~ O *  and integrated over a l l  space t o  y ie ld  a 
s e t  of two simultaneous equations t o  solve f o r  the  constants al and ap: 



1.' where the matrix elements Hij are defined as 
; / r  

' > We need not actually solve for the constants a1 and a2 to obtain the 
". - allowed energy levels, for the simultaneous equations (6.63a) and (6.63b) have - finite solutions if and only if the matrix equation 

2 

is satisfied. The two roots of this determinant are 

The perturbation potential is norr~~ally tiominated by the third derivative 
terms, so the perturbation Hamiltonian can be expressed as 

In this case, the matrix eiements H l l  a d  H22 both contain factors of the 
form 

where the ui(yi) ter-s are the single-mode harmonic oscillator wave functions 
specified in equation (6.60), and these factors all vanish because of symmetry. 
Thus H l l  and HZ2 can be expected to be very small, dependjng only on fourth- 
and higher-order terms in the Taylor series expansion of the potential. Jn 
addition, because the perturbation involves only the coordinates and no 
momenta, the perturbation Haailtonian H' contains no differential operators 
with the result that H 1 2  = H21. TO a good approximation then, the Fermi 
resonant energy levels given by equation (6.66) become 



If the unperturbed levels are degenerate, that is, El0 = E20, the perturbation 
splits the levels an equal amount higher and lower in energy: 

If the unperturbed energy levels have an energy difference small compared with 
the perturbation matrix element H12, 

and, finally, if H12 is small compared with the energy difference (El0 - E~O), r 

the Fermi resonant levels become 

In this case, the upper level is elevated in energy and the lower level is 
depressed by equal amounts - the same result given by small-perturbation 
theory (eq. (5.40)) for a two-level system. 

The third derivatives of the potential are not normally known a prior4, 
so the matrix elements H12 are evaluated by empirically fitting the results 
to the observed energy levels. Since tr~ese elements are normally quite small, 
only those levels with nearly equal energy, EiO = EjO, will contribute appre- 
ciably to the Fermi resonance effect and often only a two-level system needs 
to be considered. If more than two levels happen to  lave nearly equal energy, 
the same procedures are followed in setting up an m level system, mi~ing the 
wave functions as ~bove, and finally one obtains an m-rank determinant !.n 
place of cqua~ion (6.65) to solve for the allowed energy levels. Not a'!, 
levels of nearly equal energy exhibit Fermi resonance, however; only those 
having the same symmetry type will mix. If the wave functions have a differ- 
ent symmetry in some of the coordinates other than the vibrational coordinates 
(e.g., a rotational angular coordinate), the matrix elements for perturbations 
of the typc given by equatinn (6.67) will all vanish. h e  would need to con- 
sider rotation-vibration coupling to obtain expressions for the mixing of 
states with different rotational symmetry. To some degree, all harmonic 
oscillator states of the same symmetry are mixed by anharmonic terms in the 
potential, and states of different slmetry are mixed by highsr-order coupling 
terms. Onc should, however, kee? in mind that the real states are not mixed 
at all - each is a pure eiyenstate for the actual Hamiltonian that exists. 
The so-called mixing of states is an artifzct produced by the choice of cormal 
coordinates in which the motions of tie system are viewed or. in other words, 
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the choice of harmonic oscillator wave functions as ar  orthonormal set of 
*i ... functions in which to expand the actual wave function. 

\i' 
h. 
.,-? 
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Z. Fermi resonance occurs between other internal energy modes, of course, as 

i 

'7 F, well as the oscillator modes, such as rotational or electronic modes, whenever 
&+ 
3 .  

the energies are close and the symmetries are correct. In any case, the anal- 
1 :.* ysis proceeds by the same general perturbation schemes outlined above. 

x? 
8 .  
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Problem 6.8(a). Show that if the waLc tunctio . 

- .: 
A *  

I- 
are orthogonal and normalized, where $lo and $2@ are two eigenfunctions of an orthonormal set, the constant 
coefficients aij must be related: 

r a11 = fa22 (6.69a) 

(b) Cmsider Fermi resonance between the states and $20 for B]@ = E~~ and H l l  = HL2 = 0 and show 
that the wave functions become 

(c) Consider Fermi resonance between the same two states for H11 = Hz2 = 0, where H12 << ~ 1 '  - E L o ,  and 
show that the constant coefficients may then be ex:.-essed ss 

Note that multiplying either of the wave functions In equatlon (6 .68)  by -1 yields the sdme solution, as indicated 
by the sign permutations In equation ( 6 . 6 9 ) .  

For C02,  a strong resonance exists between the 10O0 level and the 02O0 
level, but the 0220 level has a different symmetry and does not couple with 
the 1000 level. To conveniently examine the symmetry of such states, the 
bending mode wave functions next are expressed in terms of normalized polar 
coordinates rather than the set y2a  and y2b used previously. 

6.10 LINEAR TRIATOMIC MOLECULE BENDING MODES IN POLAR COORDINATES 

The vibrational bending modes of a linear triatomic molecule were found 
to have the wave function 

This wave function can be expressed In terms of the polar coordinates p and A ,  
defined as 



Y 1 tan - = X 
92 

Schroedinger's equation in cylindrical coordinates becomes 

Assume the wave function is separable: 

JI = R(p)@(h) (0 .- 35) 

Substitute equation (6.75) into (6.74) and multiply by p 2 / ~ ~ :  

The functions of p and h in equation (6 .76 )  must each be constant to satisfy 
the equation. Let . 

Then the normalized solution for @ is 

The quantum number 1 must obviously be an integer if the wave function is to 
be single-valued. Only positive integers need be -onsidered since negative 
values have been allowed for in the exponent. The remaining wave function for 
R is 

At p  + m, the solution for R obviously va;ies as e -p2'2, and the singular- 
ity at the origin can be renoved by factoring out p Z .  Let x = p 2 ,  then 

Substitute equation (6 .80)  into (6.79) and obtain the differential equation 
for the function L ( x )  : 



? f This is  Laguerrets equation again, and a f i n i t e  polynomial solution e x i s t s  
& 

,; 1 @ when the  l a s t  fac tor  i s  

$I 
! ,  where n is  any posi t ive integer from 1 t o  -. These solutions a r e  the  asso- 

-.- ciated Laguerre polynomials: 
d 

,-. 2 
L  = L, ( x )  ( 6 . 8 3 )  

The Laguerre polynomials are  defined by 

and the  associated Laguerre polynomials by 

The f i r s t  few Laguerre and associated Laguerre polynomials a re  

L,,(x) = 1 

L 1 ( x )  = - ( x  - 1 )  

~ ~ 1 ' 3 ~ )  = -1 

L 2 ( x )  = x2 - 4x + 2 

L ~ ~ ( x )  = 2x - 4 

~ 2 2 ( x )  = 2 

L 3 [ x )  0 -(x' - 9x2 + 1& - 6) 

L&X) = - (3x2  - 1& + 18) 

L ~ ~ ( x )  = - ( 6 ~  - 18) 

L ~ ~ ( x )  = -6 



The l ist  may be extended by means of t he  recursion r e l a t ion :  

Ln+l (3) + (X - 1 - 2n)Ln(x) + n2~,,1 (x) = 0 (6.83~) 1 
... j 

From equation (6.82), the  a1 lowed energy leve ls  a r e  
i 

> 
where v is the  t o t a l  quantum number 2n - Z. This expression i s  the  same a s  
found i n  equation (6.49) "or the  energy leve ls  of two degenerate modes of 
vibrat ion.  T)..e t o t a l  wave function i n  polar  coordinates becomes * < 

where p 2  is a dimensionless normal coordinate t h a t  may be r e l a t ed  t o  t he  
bending angles $g and $b by 

For the  p a r t i c u l a r  s e t  of normal coordinates chosen (see f i g .  6.2), t h i s  
becomes 

The in teger  (v + 2)/2 must be equal t o  o r  g rea t e r  than the  in t ege r  2 i f  
the  Laguerre equation i s  t o  have a f i n i t e  polynomial solut ion.  Thus, there  
a r e  (o + 1) d i f f e ren t  wave functions t h a t  correspond t o  the  values 

2 = 0 , 2 , 4 , .  . . , v  i f  v i s e v e c  
I ( 

and t h a t  allow f o r  both pos i t i ve  and negative exponents i n  t he  f ac to r  etiZA r ,  
iT except when 2 = 0. , 
'{ 

Problem 6 . 9 :  Use the moment-ge~~crsting funct~ons  for :be a . twc i .~ trd  Lajiuerre poljnornial?, to evaluate the 
normal~ration constant required for the wave functlon In cquatlon (b.85): 
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.. lntcprrte the product ~ - ' * U ~ V ~  over e l l  r from 0 t o  - to  show that 
9 ; 

I * ,-x(l-uy)/(1-u)(l-y) & 

. t' r , t=a 

* 1 %  

I%olate  those terms where .r * t = ( v  1 ) / 2  and e = Z and, by comp;tring c o e f f i c i e n t s ,  s h o ~  that 

Show that the normalization constatit in eqt~atio-  (6.851 I S  {:lven by 

( h . P 7 )  

( 6 .  R R )  

Classically, the 4esalcrate normal mode vibrations can be coupied in any 
arbitrary phase and th: coupled motion follows an elliptic path in space which 
will have ang~lar momentum of any value from zero up to the maximm, where the 
angular momentum energy equals the total vibratiolial energy. In tnis state, 
the linear molecule is rolling in a permanently bent configuration such that . 
the centrifugal forcas balance the restoring forces. Quantum mechanically, 
only those phase couplings are allowed where the angular momentum takes inte- 
gral values of f i .  The total energy is not changed by the different values of 
angular momentum if the small anharmonic effects be neglected - which actually 
do split the degenerate levels slightly. The increase in rotational energy as 
2 increases is balanced by a decrease in kinetic and potential energies asso- 
ciated with changes in the bending angle. The doubly-degenerate modes are 
designated by the index vZ, where v is the total vibrational qL:antum number 
giving the total energy and Z is the absolute magnitude of the rotational 
quantum number which, to the harmonic potential approximation, does not affect 
that total energy, but which establishes the symmetry properties of the wave 
function. As previously discussed, the integer 2 is the absolute ma nitude 
of the difference between the quantum numbers of the individual modes fv2 - v11. 
When v2 = vl = v / 2 ,  the motions are in phase and the angular momentum is zero. 
When v l  or v2 = t, the motion is 90" out of phase with the ground-state 
motion in the other mode and the angular mumentum is a maximum. The splitting 
of levels associated with a couplj-ng frequency E is shown for the different 
levels in figure 6.4. 

We can now see how the symmetry properties of the wave function affect 
the Femi resonance coupling. The anharmonic terms are expected to involve 
the bending angles and associated displacen~ents, but because of symmetry they 
can3ct involve the angular position A .  Thus, only those states can couple 
where both values of Z are equal; otherwise, the matrix elements Ui2 (see 
eq. (5.33)) will vanish. 

The C02 molecule is a good example of the above. The bending-mode 
frequency ( 0 2  = 667.5 cm-l) is very nearly half the symmetric stretch-mode 

179 

~ c p ~ c ,  i (23 THE 
~ILl(;i:<.41, I!.'\ 18 POOR 



frequency ( w l  = 1337 cm'l) . Thus, the unperturbed energy levels (0, 2O, 0) 
and (0, 22, 0) (1335 cm-l) are only about two wave numbers distant from energy 
level (1, oO, O), and the first requirement for Femi resonance is satisfied, 
namely, that the unperturbed energy levels are close. The 0, 2*,  0 state will 
not couple with the 1, 00, 0 mode, towever, as the matrix element includes a 
factor that vanishes: 

Indeed, the 0, 22, 0 state is observed to lie at almost exactly its unper- 
turbed value. However, the energy of the 0, 2O, 0 state is depressed to 
1284 cm-l while the 1, oO, 0 state is elevated to 1388 cm'l by Fermi resonance 
between the two states. These are nearly symmetrically placed about the 
unperturbed value as predicted by theory. A perturbation matrix element 
U I 2  = 52 cm-l is required to explain these results. 

Some higher vibrational levels of C02 will also be in Fermi resonance 
with one another, for example, the 0, 3l, 0 and 1, 11, 0 levels. The next set 
of levels with close-lying energy and the same synmetry are the 0, 4O, 0; 
1, 2O, 0; and 2, 00, 0 levels. In this case, three levels are involved and 
the perturbation treatment would need to be expanded to include three levels. 

The linear triatomic molecule C 3  is considered next because it is a good 
example of the principles discussed above; in addition, it exhibits some 
abnormally large deviations from the usual normal-mode approximation and 
affords a chance to introduce some of the techniques useful in analyzing such 
deviations. 

6.11 LARGE-AMPLITUDE BENDING OF C3 

The bending motions of most triatorr~ic molecules can be adequately treated 
as small-amplitude, normal-mode displacements with higher-order corrections 
provided by small-perturbation treatment. The linear triatomic C3 molecule, 
which appears in the ablation of graphite heat shields and in gaseous products 
of hydrocarbon combustio~, is an interesting exception. This linear molecule 
has a very low bending frequency (refs. 3-S), about 63 cm'l, and maximum total 
bending angles are large (ref. 6 ) ,  the order of 60'. With such large- 
amplitude bending, one naturally expects deviations from normal mode models. 
Gaussc? et a1 (ref. 4) and Merer (ref. 7) ob;erve a decrease in the moment of 
inertia as the bending quantum number increases, which lsdicates that the end 
atoms are pulled inward as the bending angle increases and thattheHamiltonian 
should include terms for the curvilinear motions of the atomic nuclei. Since 
C3 stretch vibrations have respectably large frequencies (ref. 8) that irldi- 
cate a stiff bond (1225 cm'l for symmetric stretc,h and 2030 cm'l for asym- 
metric stretch), these vibrations cart be treated to a reasonable appro):imation 
as completely decoupled modes. This permits us to concentrate on a -imple 
model for the Hamiltonian that isolates the cfiects of large-amplitude bending 
on the rotational constant and on the bending energy levels so that these 
effxts can be readily visualized. 



Figure 6.5 shows the  geometry of  t he  
bending molecule. The parameter 6 
accounts f o r  t h e  curv i l inear  motion of  the  0 f 
end atoms by defining point  A a constant 2 r 
distarrce d from t he  end atoms, where d sar y d  1 
is the  interatomic spacing a t  zero bending. +-\a : 
I f  6 = 0, t he  end atoms move r e c t i l i n e a r l y  Twd 
along nonnal mode coordinates; i f  6 = 1/3, r ---I 
t he  end atoms move along c i r c u l a r  a rcs  a Figure 6.5.  - Coordinates f o r  f ixed dis tance d from the  center  of  mass; l i nea r  t r ia tomic molecule i f  6 = 1, t h e  atoms move along a rc s  a 
f ixed d is tance  d from the  cen t r a l  atom. Y-Y-Y (C, center  of mass; A ,  

locus of  points  a f ixed d i s -  Generally, a var iab le  6 i s  required t o  tance d from the  end atoms f i t  t he  observed var ia t ion  i n  t h e  moment of dvring bending). i n e r t i a  of t h e  molecule exactly,but a con- 
s t a n t  value i s  found t o  reproduce the  observed moment of i n e r t i a  for  C3 
within 1 percent,  which is considered su f f i c i en t  f o r  present purposes. 

The cy l indr ica l  c o o ~ d i n a t e s  of  the  cent ra l  atom ( f ig .  6.5)  a r e  2 r ,  0,  and 
4; t he  coordinates of the  end atoms a r e  r, +z ,  and 41 + n. The axia l  d i s -  
placement s is  

and the  a component o f  ve loc i ty  cdn be expressed as  

where the  function g ( r )  i s  definer! a s  

Accordingly, t he  k ine t i c  energy can be expri=sed a s  

where m i s  t he  mass of  a s ing le  atom. The momenta conjugate t o  t hc  r and 4 
coordinates a r e  

The Hamiltonian is the  sum of the  poten t ia l  and k ine t i c  energies when 
these a r c  expresset i n  t e n s  of coordinates and t h e j r  conjugate nonS*r.td: 



- .---': The reduced mass rc equals 6m in the present coordinate system. Note the i r 

. . 4, 

. , is a positive quantity, equation (6.91), and the effect of bending is to' 
1 .  . < increase the effective reduced mass to p(l + g) so far ds the radial coo&& 

7 -' . 1. ..1 

i -:-+- nate mtion is concerned. Accordingly, the energy eigenvalues are expected to as .-i . s  - ,  
9 ;:. be less than the simple harmonic oscillator eigenvalues, I i 

t --- I !  
f - .  ..: Thr 3otentia. -ight be expressed in terms of arc distance or the ' 8  f 

coordin~~e; but tti-se are expressible as functions of, r alone by Fans of. 
the. Rownec,er 6. T@ potential f s according1 considered k the sum of 'a '. Y 

C ! 

, - zeroth-bider term VO (r) and a perturbation V ( r )  , so the Hamiltonian may be 
,- expressed as e7 I i. 

where the function f is the negative quantity . I : 

'The Hermitian operator for the first bracket in equation (6.95) is the 
usual zeroth-order Harniltonian operator in cylindrical coordinates, 

while the Hermitian operator for the second bracket, as shown in appendix 6-A, 
is 

The potential v O ( r )  is chosen so that eigenfunctions $O and their 
corresponding eigenvalues E0 can be found for the steady-state Schroedinger 
equation p g O  = E O g O .  The angular dependence of q0 can be disposed of'with 
the usual separation of variables: 

where v is a total bending vibration quantum number, 2 is the angular 
momentum quantum number of bending mtion, and Rut is the normalized 
solution to 



The true energy levels EVz may be approximated with first-order 
perburbation theory by 

0 
E v z  = E v z  + U v z  (6.lbl) 

where the matrix elements UvZ are defined as 

The average over all 4 has already been performed in the last expression in 
equation (6.102). 

The matrix elements may be further developed in a generalized form by 

The second term in equation (6.103) is integrated by parts, leading to a tern 
that vanishes due to the boundary conditions on the wave functions , R v z ,  a 
term that cancels the first integral, and a final result: 

For a constant 6, the dimensionless function f given by equation (6.96). 
which is needed to evaluate the matrix elements above, is 

The constants 6 and d are now chosen so that the averaged value of the 
rotational constant fits the observed variation in vibrational quantum number. 
'FOX rotation about an axis perpendicular to the molecular axis of symmetry, 
this averaged rotational ccnstant is 
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The last expression in equation (6.106) has been expanded to terms of order 
((r/d) 2)and averaged over all 4; the averaging over r remains. 

The expressions derived-above are general and are valid for any potential 
model. We now consider a potential that is quadratic in the bending displace- 
ment with a small quartic anharmonic term: 

where p is the normal bending coordinate 

and and c are constants to be fitted to the observed energy levels. 
Because of the symmetry of the molecule, the potential cannot have terms that 
vary as an odd power of r. The first-order solutions are just the normalized 
harmonic oscillator solution in equation (6.85) with the eigenvalues given by 
equation (6.84) . The average value of ((r/d) 2, needed to fit equation (6.106) 
to the rotational constant is obtained to a first approximation using these 
first-order wave functions: 

Problem 6.10: Use the aouient-generating functions for  the associated Laperre polpoplials from problem 6 .9  
to show that 

and derive the value o f  ((r/d12) given by equation (6.109). 

Further show, by the same method, that 

The expression for the rotational constant obtained from equations (6.106) 
and (6,109) is 





The r e s u l t s  a r e  shown i n  t ab le  6.1 i n  un i t s  of h. In the  column headed 
+ ~ ~ ~ ) / h ,  t he  first number i e  jus t  (v + l ) ,  or the  mperturbed harmonic 

o s c i l l a t o r  energy; the  second number is the  f i r s t -order  correction f o r  curvi- 
l inea r  bending, or the  f i r s t  in tegra l  i n  equation (6.112) ; the  f ina l  number is  
the f i r s t -order  correction f o r  t h e  quar t ic  potent ia l  term, o r  equation (6.115). 

TABLE 6.1.'- BENDING VIBRATIONAL ENERGY LEVELS FOR HARMONIC OSCILLATOR MODEL 
OF Cg WITH FIRST-ORDER PERTURBATION CORRECTION FOR CURVILINEAR BENDING' ' 
MOTION &D A QWTIC PERTURBATION POTENTIAL 

The e f fec t  of curvil inear  motion during bending is  t o  remove the  
degeneracy of  s t a t e s  having d i f ferent  angular momentum, with decreases i n  
vibrat ional  energy between about 3 t o  8 percent f o r  the  first s i x  levels  (as 
l i s t e d  i n  the  last column of table  6.1). The larges t  decreases occur f o r  
s t a t e s  with minimum angular momentum, 2 = 0 o r  1. For these s t a t e s ,  the  clas-  
sical motion is predominantly bending i n  a s ingle  plane and the  k ine t i c  energy 
associated with the  a-direction veloci t ies  is maximized, leading t o  a maximum 
value of  g o r  of the  ef fec t ive  reduced mass. The smaller decreases occrr  i n  
the  upper levels  with maximum angular momentum, 2 = u. For these s t a t e s ,  the  
c l a s s i ca l  motion is predominantly the  ro l l ing  motion of a continuously bent 
configuration i n  which the  a-direction veloci t ies  a re  minimized. 

State,  
vz 

0" 
1' 
22 
20 
3 
3 l  
4 
42 
4O 
5 !5 
5 
5 I 
66 
6' 
62 
6 O 

I 
The ef fec ts  of both the  curvil inear  bending and a steeper than quadratic 

potent ia l  a r e  needed t o  reproduce the  observed energy levels  f o r  C3. The 
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0 
(But + Uvz)/fiw 

1.000 - 0.049 + 2~ 
2.000 - 0.070 + 6e 
3.000 - 0.091 + 1 2 ~  
3.000 - 0.140 + 1 4 ~  
4.000 - 0.111 + 20e 
4.000 - 0.207 + 24e 
5.000 - 0.130 + 30€ 
5.000 - 0.271 + 3 6 ~  
5.000 - 0.317 + 38e 
6.000 - 0.148 + 42e 
6.000 - 0.332 + SO€ 
6.000 - 0.423 + 54e 
7.000 - 0.166 + 56e 
7.000 - 0.390 + 66e 
7.000 - 0.525 + 72e 
7.000 - 0.570 + 74e 

Curvilinear bending 
correction, percent 

-4.9 
-3.5 
-3.0 
-4.7 
-2.8 
-5.2 
-2.6 
-5.4 
-6.3 
-2.5 
-5.5 
-7.1 
-2.4 
-5.6 
-7.7 
-8.1 
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splitting of energy levels and the 500 
convergence at higher quantum numbers 
produced by curvilinear motion alone 
is actually the reverse of that 
observed. On the other hand, the - 400  
quartic perturbation effect alone pro- 'E 
duced a much larger splitting of angu- 0 

lar momentum states than observed. 
i s 0 0  The combination of the two effects 

results in a pattern of energy levels w 
very similar to those observed. Fig- 8 
ure 6.7 compares experimental energy t 
levels end the first-order perturba- B200- 
tion harmonic oscillator solutions of > 
table 6.1 when &J = 56.7 cm-l and H E = 0.036. One might reiterate'the 
calculation of matrix elements using 8 100- 
this new value of &, but the func- 
tion f i x )  is not sensitive to the 
exact value of h w ,  so the results 
should not be changed greatly. O -  

F 

6 0 -  --- 66 - 
- 

- so 
-42- 

44 

3' 
-33- 

20 - 22- 
- 11 - 

-oO- ' 

OBSERVED HARMONIC OSCILLATOR WITH 
At the time this book was pre- LEVELS FIRST ORDER PERTURBATIONS 

6 w  1 56.7 cm-1, E = 0,036 pared, levels beyond o = 6 had not 
been identified for C3. In any event, 
the above f irst-order perturbation Figure 6.7.- Bending vibration energy 
model would not be suitable for extrap- levels observed for C3 (--- levels 
olation much beyond this level because unidentified but deduced from 
the value of E required to match the empirical fit to observed levels, 
observed levels is large enough that ref. 4) and levels calculated from 
second- and third-order perturbation first-order perturbation of a 
terms will become important for the harmonic oscillator model. 
higher levels. The above results do 
serve, however, to show the magnitude of curvilinear motion effects and how 
these counterbalance the effects of a steeper than harmonic bending potential 
function to give the final pattern of energy levels observed. 

The effect of curvilinear motion is the order of 5 percent on the average. 
This correction is large from the viewpoint of the spectroscopist, who 
attempts to closely fit observed energy levels with models, but the correction 
is a tractable one from the viewpoint of the thermodynamicist, who primarily 
wishes to deduce gas properties from the partition function. Note that the 
contribution of curvilinear motion is a relatively constant fraction of the 
total bending energy, independent of the quantum level involved. This means 
that effects of curvilinear motion can be approximately accounted for in a 
normal mode model merely by adjusting the potential function used. For example, 
a 5-percent smaller value of w will approximate the average effects of curvi- 
linear bendinq motion in C3. In such cases, normal mode approximations can be 
extended beyond the usual small-amplitude limits where sin r / d  = r / d  and yet 
give reasonably good results. The bending of most other triatomic molecules 
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is  much l e s s  extreme than occurs i n  C j ;  therefore,  f o r  these  molecules, t h e  
e f f e c t s  of  curv i l inear  motion a r e  much smaller st i l l  and normal mode models 
are usual ly qu i t e  adequate. 

An addi t ional  e f f ec t  of large-amplitude bending i n  C3 (not ye t  adequately 
analyzed a t  the time t h i s  book was wri t ten)  is t h e  I-doubling produced by 
vibrat ion-rotat ion coupling. The cent r i fuga l  s t r e t ch ing  forces  and the  
Cor io l i s  forces  due t o  ro ta t ions  about an ax i s  perpendicular t o  the  molecular 
a x i s  both contr ibute  t o  a perturbation t h a t  s p l i t s  t h e  usual ly degenerate 
bending leve ls  i n  much the  same manner a s  Fermi resonance. Nielsen ( r e f .  9) 
t r ea t ed  t h i s  problem thoroughly f o r  harmonic bending v ibra t ions ,  and t h e  cor- 
rec t ions  a r e  usual ly small u n t i l  r a t h e r  high ro t a t iona l  quantum numbers a r e  k 

considered. The e f f e c t s  a r e  important i n  ident i fy ing  exact energy l eve l s  by 
the  spectroscopist  but a r e  usual ly second o rde r  s o  f a r  as t h e  p a r t i t i o n  func- 

, t i o n  of l i n e a r  t r ia tomic molecules a r e  concerned. C3 is an exception. The 
Cor io l i s  force coupling with bending modes is  still  small because che bending 
v ibra t ion  ve loc i t i e s  orthogonal t o  t he  ro t a t ion  vector  a r e  so small, but  t h e  
cent r i fuga l  s t r e t c h  coupling with bending v ibra t ion  is  abnormally la rge  
because of t he  la rge  amplitude o r  low frequency o f  bending. In addi t ion,  
curv i l inear  motion e f f ec t s  a r e  present.  A s  a r e s u l t ,  t he  bending mode energy 
leve ls  a r e  rapidly spread apar t  i n  proportion t o  J(J + 1) a s  t he  t o t a l  ro ta -  
t i on  quantum number J increases.  The ana lys is  of t h i s  e f f e c t  can be ca r r i ed  
forward by methods s imi la r  t o  those out l ined above. 

Problem 6.11: Consider the bending vibrations of a linear triatomic moiecule with three equal mass atoms < 
and a square-well, cylindrical potential function: ! , {  

where r is the displacement of thc end atoms from the axis o f  symmetry. Assume that all other internal energy i 

modes are decoupled. Set up the Schroadinger equation in cylindrical aordinates. What is the reduced mass in 
this equation? 7 

Find the normalized wavc-function solutions and the eipenvalues. Find a limiting expression for the eigen- 
i 

' .r. 
values at largc quantum nuahcrs. llow do the eigenvalues vary with quantum number? 

I Pmblem 6.12: Consider a dcuhly degenerate vibrational mode with degeneracy gv v + 1 and a character- , '> 
istic temperat~lre 0, hut with the energy levels sp:~ced as v 2 :  7. 

' : 

Evaluate the partition function, 

for T > 0 ,  approximnting thc sammat ion with an integral and retnininp t c m s  o f  order (T/Q)''~. 

What is the contribution to E - Eo, to Cv, and to S from these vibrational levels? For T z>  9, how does 
the l init compare with Ilarnonic oxillator results? 

k -! 
* : 

6.12 VIBRATIONS OF n-ATOM POLYATOMIC MOLECULES ; 4 

j Molecules with more than three  atoms have more i n t r i c a t e  symmetry 
propert ies  than the molecules considered so f a r ,  and the  problem is then 
developed most systematically using group theory. However, the number of 
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independent vibrational modes which exist for an arbitrary n-atom molecule 
can be deduced very simply. Of the bn coordinates available to the molecule 
totally (3n independent position and momentum coordinates each), six independ- 
ent coordinates &re dedicated to the center of mass, while four coordinates 
are associated with the rotational motions if the molecule is linear and six 
cocrdinates if the molecule is nonlinear. Thus, there exist 6n-$0 vibrational 
degrees of freedom for linear polyatomic molecules and 6n-12 vibrational 
degrees of freedom for nonlinear polyatomic molecules. Two degrees of freedom ? 

are associated with each normal mode of vibration, so the total number of 
vibrational modes is 3n-5 and 3n-6 far linear and nonlinear n-atom molecules, 
respectively. Some of these may be degenerate because of molecular symmetry; 
the sum of the degeneracies for the vibrational modes must add up to the above 

From the viewpoint of a thermodynamicist or aerodynamicist, the important 
task is to develop a reasonably accurate expression for the partition function 
of such n-atom molecules as may occur in various gasdynamic problems. The 
normal mode vibrational frequencies are available for most common molecules 
from spectroscopy; a few of these are listed for some triatomic molecules in 
table 6.2 end for some common four- and five-atom molecules in table 6.3. The 
degeneracy of each triatoleic ~nolecule vibration is unity, except for the 
linear molecules where the degeneracy of the bend in^ vibration, vp,  is two. 

TABLE 6.2.- FUNDAMENTAL VIBRATIONS OF SOME TRI.ATOMIC MOLECULES ' 

I Vibiat iono 1 frequency, ~ i a l -  

Molecule L 
Bond angle, deg 

"1 v2 V 3 2a 

0-C-0 1388* 667.3 2349 180 
S-C-S 655 39 7 1510 180 
H-C-N 2096 712 331 2 180 

305 7 1595 3776 105 

2666 1179 2 789 1 US 

261 1 1183 2626 32 

N-N-0 1285 5119 2224 180 

1306 755 162 1 130 

11 10 705 1043 117 

1362 I 120 

*Fermi resonance with 02 0, 1286 cm- l .  

, 
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TABLE 6.3. - FUNDAMENTAL VIBRATIONS OF 
FIVE-ATOM MOLECULES 

SOME POOR- AND 

Vibrational frequency, cm- l 
+ 

Molecule . Configuration 
v l  v2 v3 "4 v5 v6 

H-C-C-H 3373 1974 3282 613 731 ---- Linear 
H, 

C-0 2780 1744 1503 2874 1280 1167 Planar 
H ' 

NH3 3337 950 3444 1628 ---- ---- Pyramid 

O\ S-0 1069 652 1330 532 ---- ---- Planar 
0' 

CHI, 2916 1534 3019 1306 ---- ---- Tetrahedral 

CH3CZ 2966 1355 732 3043 1551 1017 Tetrahedral 

The degeneracies of  t h e  four- and 
five-atom molecules can o f t en  be 
deduced simply by considering possible  
symmetry coordinates,  without r e so r t -  
ing t o  group theory formalism. For 
example, f i gu re  6.8 shows a s e t  o f  
symmetry coordinates f o r  the  XY3 
molecule. The symmetric s t r e t c h  mode 
designated v l  has ju s t  one possible  
independent motion. The symmetric 
bending v2 t h a t  occurs out of t he  
plane of the  f igure  a l s o  has j u s t  one 
independent motion. However, t h e  
asymmetric s t r e t c h  mode v3 has two 
different.  motions t h a t  give the  same 
frequency. A t  f i r s t  glance, one 
might surmise t h a t  t h ree  such vibra- 
t i ons  a r e  possible ,  corresponding t o  
the  approach of any one o f  t he  th ree  
equivalent Y atoms toward t h e  center  
of mass as the  o ther  tko Y atoms 
recede. The t h i r d  motion depends on 
the o ther  two, however, because of  t h e  
requirement t h a t  t h e  center  of mass be 
fixed. For exam~le ,  think of t h e  

SYMMETRIC STRETCH Ui 

91 ' 1  

SYMMETRIC BENDING U2 

% * I  

A s30 ./k S3b 

? : P C  STRETCH 5 

1 I ASYMMET RlC BENDING UA 

Figure 6. $. - Symmetry coordinates fo r  
the  X Y 3  molecule. 



j 
central X atom as infinitely massive so that it stays at the center of mass. 
Then if the positions of two of the Y atoms are established, the third is 
automatically determined. Thus all possible positions of the outer atoms 
along the bond directions, for which the center of mass is constant, can be 
uniquely described by the two asymmetric stretch modes shown. The same situa- 

I 
tion exists for the asymmetric bending modes u4 for motions of the outer M 

atoms at right angles to the bond directions. The degeneracy of this mode is 
again 2 since the position of any two of the outer atoms along these direc- 
tions automatically fixes the position of the third, as for the infinite mass I 

central atom case. In the actual molecule, the central atom has finite mass, i 

of course, and it takes part in the normal coordinate motions, which are some- 
thing like the symmetry coordinate motions shown. The infinite mass central 
atom case is merely helpful in separating the allowed degeneracies in a f 

succinct way. 

The XY3 molecule may be planar as in SO3, or pyramidal, with the 
equilibrium position of the central atom out of the plane of the three outer 
atoms, as in N H 3 .  In either case, the bending modes and their degeneracies 
are as shown in figure 6.8. If one of the outer atoms is substituted with a 
different atom, the degeneracies are removed and six different normal mode 
frequencies occur. Even the substitution of a different isotope splits the 
degenerate levels into closely spaced doublets. With highly sensitive spectro- 1- . 

graphs, weak isotope doublets are observed in such gases even under normal 
conditions because of traces of isotope species present in nature. 

I 
I 

Figure 6.9 shows symmetry coordinates 
for vibrations of a linear symmetric X2Y2 
molecule, such as acetylene. The stretch 
coordinates are chosen to isolate the 
vibrations of individual bonds; for most 
potential models, the normal stretch coor- 
dinates are simple linear combinations of 
these and will be along the axis of sym- 
metry. The hending symmetry coordinates 
shown are the same as the bentling normal 
coordinates for mvst potertj a1 models. In 
this case, the stretch modes v l ,  vp,  and 
v3  clearly all have a degeneracy of I, 
while the bending modes VI, and us have a 
degeneracy of 2, corresponding to the 
bending in the plane of the figure and out 
of the plane of the figure, just as for 
the linear triatomic molecule. 

Figure 6.10 shows symmetry coordinates 
for vibrations of a t9trahedral molecule 
with central atom XY4, such as methane. 
In this case, the normal coordinates are 
complex combinations of the symmetry coor- 
dinates, or a similar such set, and lie 
along directions different from the bond 
directions, just as for the bent triatomic 

+ - SYMMETPIC STRETCH Vl 
s I 9, 'I 

INNER BOND STRETCH V 2  

S2 g2 'I 

01-0 3- ASYMMETRIC STRETCH V 3  

S3 g3*1 

-1 r 
ASYMMETRIC BENDING UA 

SYMMETRIC BENDING V5 

%b 

Figure 6.9. - Symmetry coordinates 
for the linear symmetric X2Y2 
n~olecule. 
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' ,~~~rn/fi.L PAGE * POOR molecule. Again, it is helpful t o  

4 bmMlttl)lC m a 4  V I  
consider the  cent ra l  atom a s  i n f i -  

O, 1 n i t e l y  massive t o  separate the  nm- 
ber  of  independent degenerate modes. 
The symmetric s t r e t ch  mode v l  i s  
again singly degenerate. The t e t r a -  * 9 trtlwwm rwm ug hedron twist ing mode v2 is doubly 

ot ' 2 degenerate; a t h i r d  s e t  o f  opposing 
twistable edges a r e  available i n  
the  tetrahedron, but again t h e i r  4 & ~ V Y  posit ions are uniquely determined 
by the  two twist ing motions shorn 

SN SX and the  requirement tha t  the  center  
of  mass be constant. The cent ra l  & & bond bending motions a r e  t r i p l y  
degenerate, corresponding t o  the  

%0 =a %C motion of  th ree  of the  tetrahedral  
faces toward and away from the  cen- 
t r a l  atom, Again, the motion of 

Figure 6.10. - Symmetry coordinates f o r  the  fourth face of the  tetrahedron 
the tetrahedral  molecule with cent ra l  is uniquely determined by the  
atom, XY4. motion o f  the  other  three and the  

constant position o f  the  center  o f  
mass. Finally, the  tetrahedron angle bending is t r i p l y  degenerate; three sets 
of two angles each partake in  the  vibrations shown, the  fourth s e t  again 
depends on the  other three se t s .  

When one of the outer  atoms i s  replaced by a d i f ferent  atom, a s  i n  methyl 
chloride CH3CI, some, but not a l l ,  o f  the  degeqeracies a r e  removed. For 
example, i n  the  central  bond bending mode, the  cent ra l  atom moves toward a 
plane with two H atoms and one Ci! atom i n  two possible ways, and toward a 
plane with three H atoms i n  one possible way. Thus the  t r i p l y  degenerate cen- 
t r a l  bond bending mode is s p l i t  i n to  one doubly degenerate level and one 
singly degenerate level .  Similarly, in the  tetrahedron angle bending modes, 
the  Ci! atom sits a t  the  vertex of one of the bending angles in  one case, while 
an H atom sits a t  the vertex of  both bending angles i n  the  other  two cases. 
Again, the t r i p l y  degenerate level  is s p l i t  i n to  one singly degenerate level  
and one doubly degenerate level.  For the  tetrahedron twist ing modes, one of 
the twisted edges contains a CZ atom no matter which of  the  two opposing edges 
is chosen t o  describe the  twist ing motion, and t h i s  level  remains doubly degen- 
erate.  Thus, one observes s i x  independent vibrat ional  frequencies Jor the  
CH3CZ molecule ( table 6.3). Assigning the  allowed degeneracies t o  the  
observed frequencies is  not always a simple matter, however, as  t h i s  requires 
tha t  a potential  model be established which closely fits the  observed 
frequencies. 

In principle, one could continue t o  analyze yet more complex polyatomic 
molecules in t h i s  way. The reader can readily deduce the  allowed degeneracies 
of  CH2CZ2, fo r  example, and can a lso  appreciate tha t  a tetrahedral  molecule 
with two di f ferent  subst i tut ions,  such as  CH2CZBr, w i l l  have a f u l l  set o f  
nine singly degenerate energy levels ,  However, eventually, the  pat tern o f  
symmetries becomes so complicated tha t  some of the possible motions o r  t h e i r  
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redundancies will likely be missed. The advantage of analyzing the proble. 
with the fomlism of group theory is to avoid such error. Nevertheless, the 
results are still based on the same type of physical and geometrical concepts 
introduced here in the discussion of the simpler polyatomic molecules. 

6.1 3 CONCLUDING REMARKS 

For the comon, simple polyatomic molecules, the energy levels have been 
measured by spectroscopists, and the degeneracies have been assigned to these 
levels from an analysis of approximate potential models that fit the observed 
frequencies. In many cases, the harmonic oscillator model in normal mode 

I coordinates adequately represents the data and, in this approximation, the 
contribution of molecular vibrations to the partition function and the deriva- 
tive thermodynamic properties can all be expressed in closed analytic form. 

I Effects of multiple degeneracy and of Fermi resonance between levels are 

I treated by simple quantum theory with good quantitative accuracy. In princi- 
ple, anharmonic corrections can be added in the same manner as for djatcmic 

I molecules, but the available experimental data do not always warrant such 
extensions of the analysis, particularly for molecules with more than three 
atoms. This occurs partly because complex polyatomic molecules all tend to 
break up and disappear from gases tested at temperatures high enough to excite 
upper vibrational levels of such molecules. The spectroscopist is unable to 
observe strong enough lines to identify and analyze in such cases. Howeve:, 
the thermodynamicist does not urgently need these data since these excited 
species do not normally appear in gases of interest with appreciable density. 
Thus, for many practical purposes, the limitations on derived themdynamic 
properties set by lack of data is not serious. 

In somc, cases, the anharmonic effects change all the eigenvalues by 
necrly a constant ratio (C3 is bn example). In such cases, the normal mode 
model can be extended beyond the range of small-amplitude vibrations merely by 
adjusting the frequency parameter to account for the deviations from normal 
harmonic oscillator behavior, at least to the accuracy raquired fcr partition 
function evaluation. 

Polyatomic rbolecule structures caq have a complicated symmetry, which 
determines the degeneracies of the vibrational modes involved. In extremely 
complex cases, the symmetry analysis is best performed by use of group theory. 
However, for many common molecular structures having up to five atoms, the 
symmetry properties can be deduced easily by inspection. 
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L_ APPENDIX 6-A: HERMITIN: OPERATOR FOR f (r)p2 IN CYLINDF. ICAL COORDINATES *.: ::. 
9; , 

P . . . . 
P .  

! Consider a term of the Hamiltonian expressed as the product of a general 
, ! 

.. functi,on of the radius r and the square of its conjugate momentum, in 
', 1'. ' . , cylindrical coordinates, 

I I 
! 
! where p is the radial momentum. The operator for this function, which 

is used in the Schroedinger equation, is required tc oe Hermitian, that is, 

- for any two eigenfunctions F and G of this equatio~,, the operator in cylin- p 

drical coordinates must satisfy the relation (see appendix 3-A) 
. . ..- 1 

/d. ~(%)r dr = 4"' ~ ( m ) r  dr (6-A2) 

For present purposes, the operator and the radial wave functions are all real, 
so we need not be concerned with the complex conjugate aspects of the 
Hemitian relations. The integrations over angle and axial coordinate z 
sre presumed to be already performed in equation (6-A2). If p is simply 
replaced by a derivative of r in equation (6-Al), tnc resulting operator is * 
not Herrnitian because of the presence of radius r in the cylindrical coor- 

! 1 dinate volume element. However, equation (6-A1) may be expressed in equiva- 

I lent fonn as 

I Then, if momentum p is replaced by i f i ( > / a ~ ) ,  the resulting operator (used , 

I in eq. (6.98)) is Hermitian: 

i 

This may be verified hy use of the operator in equation (6-A2): A' 

The second integral is read'ly integrated by parts, which gives a term that 6 9 

vanishes because of the boundary conditions on F and aclar, and a te-m that 4 cancels the first integral, with thc final result: > 

Tha special case f = 1 leads to the usual Laplacian operator for p2 in 
cylindrical coordir ?*es, of course. 
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CHAPTER 7 - ELECTRONIC ENERGY STATES 

7.1 S W Y  

One-electron wave functions are reviewed and approximate solutions of 
two-electron systems are given in terms of these one-electron functions. The 
symmetry effects associated with electron spin are reviewed and the effects of 
electron exchange on energy levels of the two-electron system are given. The 
coupling of electronic orbital and spin angular momentum is considered next 
and the Land6 interval rule for Russell-Saunders or LS coupling is derived. 
The configurations possible for various mu1 ti-electron LS couplings are enu- 
merated (examples from the first two rows of the periodic table are given), 
and the meaning of the spectroscopic nomenclature is discussed, particularly 
with respect to the degeneracies of the electron states involved. Next the 
nomenclature, symmetries, and degeneracies for electron states of diatomic 
molecules are discussed, and some examples for N2, 02, and NO are presented. 

7.2 INTRODUCTION 

In addition to the rotational and vibrationdl energy states associated 
with the motion of atoms in molecules, the energy states associated with the 
motion of electrons about the atomic centers must be included in the total 
partition functions for both atoms and molecules. The electrons, conceived as 
classical particles, move in a potential field of combined Coulomb attractions 

i s  

and repulsions, they possess angular momentum, and'they vibrate in the sense 
that their classical orbits periodically take them between minimum and maximum A 

distances from the nuclear centers of charge, resulting jn oscillating elec- 
tric dipoles that can absorb and emit radiation. As expected then, the wave 
solutions o the Schroedinger equation in polar coordinates involve spherical tt harmonics and Laguerre polynomials just as for rotational and vibrational f 
motions of molecules. Unfortunately, the solutions for multi-electron atoms , k-, 

' \ I  

and for molecules cannot be obtained in simple analytic form. Relatively pre- 
cise numerical computer solutions are feasible in many cases, but do not have 
great heuristic value. However, simple and exact analytic solutions are 
available for the one-electron atom, and the multi-electron atom and molecular 
electron wave functions can be approximated as linear combinations of products r 

of one-electron atomic wave functions. Although this approximation does not 
lead to accurate quantitative results, it does permit one to classify the 
observed spectra and to assign quantum numbers, angular momentum values, and 
degeneracies to the observed energy levels. Spectroscopists have provided 
sucheprecise values for the energy levels in many cases of interest that the 
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7.3 ONE-ELECTRON ATOMIC WAVE FUNCTIONS 

p . . .  
.,\ .&.:>*$ 

Classically, the electmn orbits the nuclear center of the atom under the 
influence of the Coulomb potential: 

, .- . ., .. . - 
p "  r c % : g i ~ :  , , 
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I 
I where e is the charge on the electron, Ze is the charge on the nucleus, and 

i r is the distance between them. The total energy of the motion is 

A 

." 
E - : 
F+ 

difficulty-of ca1culatin.g these numbers is not a great handicap; with the 
degeneracies assigned, the thermodynamicist has all the necessary information I .j. 

to determine the partition functions and all the thermodynamic properties of 
gases that involve electronically excited atoms and molecules. Thus we start 
with a brief review of the wave function solutions for the one-electron atom 
(such as H, He+, ~i++, etc.). 

i 
! where p is the reduced mass of the electron and the nuclear particle and p 
t 

'- ,i is the momentum. In this case, the nuclear mass mn is so much larger than 

j the electron mass me that the reduced mass is almost equal to the latter: 

According to the uncertainty principle, the electron cannot orbit infinitely 
close to the nucleus. The minimum value for momentum po corresponding to a 
minimum circular orbiting distance r, is given by 

1 and the ground state energy in equation (7.2) may accordingly be expressed as 
I 

I 
i Since this must be the energy minimum, 

and the orbiting dj ,~ance in the ground state is 



where a is t h e  Bohr radius h2/mee2 (0.52917x10'~ cm) , t h a t  is, t he  minimum 
o r b i t  radius  obtained where Z = 1 and the  nuclear mass is  i n f i n i t e .  From 
t h i s  point ,  the  s l i g h t  correct ion required f o r  f i n i t e  nuclear mass is 
neglected. The ground s t a t e  energy given by equation (7.5) is  

The tlmc..injependent Schroedinger have equation t h a t  r igorously describes t he  
steady-stetc notion of  an e lec t ron  and a charged nucleus about t h e i r  centers  
of mass is exact ly the  same a s  equation (5.1) used a s  t h e  s t a r t i n g  point f o r  
the  analysic of diatomic molecule vibrat ions.  With the  po ten t i a l  i n  equa- 
t i o n  i7.1), t h i s  becomes 

To simplify mathematical no ta t ion ,  t he  dis tance r i s  commonly expressed i n  
un i t s  of a and the  energies i n  u n i t s  of e2 /a  (27.21 eV) . For the  moment, 
we a r e  concerned with negative values o f  energy between 0 and -2/2, corre- 
sponding t o  bound s t a t e s  of t h e  electron;  pos i t i ve  energy s t a t e s  correspond t o  
a f r e e  electron whose motion is  merely deflected by the  nuclear po ten t i a l .  
Let the  .:onstant n be defined by 

In these s~ni ts, equation (7.9) takes the  form 

J u s t  a s  f o r  the  ro t a t ing ,  v ibra t ing  diatomic molecule, s u b s t i t u t e  t he  sepa- 
rable  wave function $( r ,0 ,$)  = Y(0 ,$)R(r) i n t o  equation (7.11) , and obtain 
the  r e s u l t  t k a t  Y i s  t he  usual spherical  harmonic solut ion t o  t he  d i f f e r -  
e n t i a l  equation 

1 d d 2 Y +  Z(Z+  l ) y = O  ain 0 g)+ -- ZiT *T \ sin2 0 d42 

where the angular momentum quantum number Z must be an in teger  t o  obtain 
f i n i t e  s i n g l t  valued functions, while R i s  the solut ion t o  

The l a s t  term ir, equation (7.13) corresporlds t o  a po ten t ia l  from which the  
centr i fugal  fi*.:ce on the  e lec t ron ,  because of i t s  angular momentum, i s  
derivable.  Let p be a new dimensionless dis tance variable  i n  un i t s  of a :  
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REPRODUCIBILITY OF THE 
ORIGINAL PAGB IS POOR 

2Zr p = -  n (7.14) 

In this variable, equation (7.13) takes the form 

i 
E Again factor out the asymptotic behavior at large p and a tern pz  to allow 1 i 1 for the singularity at the origin 1 
i 5- 

1 
i Substitute this into equation (7.15) to obtain 

t which is the Laguerre equation (refs. 1 and 2). This equation has finite 
polynomial solutions provided n is a positive integer greater than (2 + 1). 

1 :  
i These polynomials are the same associated Laguerre functions introduced as 
9 solutions for the doubly degenerate bending modes of linear symmetric tri- 

i atomic molecules in polar coordinates (eq. ( 6 . 8 3 ) ) ,  except that the indices on 
- a.. 

i the Laguerre functions are related to the quantum numbers n and 2 

I differently: 

b 
The total wave function for a single electron bound to a nucleus of 1 charge Ze thus becomes ., 

1 I ,  , + 
5 '  2 

'i where is the normalized spherical harmonic function (eq. (4.34)) and 1 1 

f Rnl is a constant normalizing to unity the integral of r 2 ~ 3 *  over all 1 ,  1 values of r (cee problem 7.1) : 
i i ,f .; 

t 

Problem 7.1: "rove that the integral 

as required to nomalire the single-electron wave function. A procedure using the momen+-generating functions can 
i he followed as In problem (6.9) except the product e-s$+lCJ,v, should be integrated ove: all x from 0 to in 

t h i n  case: 
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The f i r s t  few normalized r a d i a l  wave funct ions a r e  

R ~ o  = ( ~ / a ) ~ / ~ 2  e-*12 
? . . t 

i 

31 2 
R20 = (y) ( 2 - p ) ~  - p / 2  

* 

1 Z/a Rjo = - 3 (T)112(6 - 6p + p2)e-'I2 

2 Z/a 
R 3  = - 3 - ~ 2 1 8  -p / 2 

! 

Alternat ive s e t s  of  orthogonal wave functions may be formed from l i n e a r  com- 
binat ions of  t he  above wave functions. For example, an a l t e r n a t i v e  s e t  o f t en  
used t o  descr ibe the  three  p o r b i t e l s  (n = 2, 2 = 1) is  

'%z = ~ 2 1  ( r ) y l O ( e , O  = & R~~ ( r )  5 r 

The bes t  coordinate system depends on t h e  symmetry of t h e  problem t o  be 
solved. For example, where perturbat ions from an external  f i e l d  with a f ixed  
d i r ec t ion  a r i s e ,  the  wave functions a r e  expressed most conveniently i n  
parabol ic  coordinates ( re f .  3) . 

The allowed energy leve ls  a r e  those given i n  equation (7.10) where n i s  
required t o  be some in t ege r  from 1 t o  m; t he  energy is  independent of the  
o the r  quantum numbers Z and m f o r  the s ingle  electron.  A degeneracy of 
s t a t e s  e x i s t s  f o r  which 2 takes n in teger  values from 0 t o  (n - I ) ,  and f o r  
each value of  2 there  a r e  2 2  + 1 s t a t e s ,  corresponding t o  +m taking values 
from - 2  t o  I .  Each s t a t e  must be doubled t o  account f o r  t he  spin degeneracy 
of t he  e lec t ron .  Thus the  t o t a l  degeneracy of s t a t e s  is the  sum of  t he  



arithmetic progression 

In spectroscopic nomenclature, the states with zero angular momentum 
( I  = 0) are called s states, the states with one unit of angular momentum 
( 2  = 1) are called p states, the Z = 2 states are called d states, while 
the Z = 3 states are called f states. This nomenclature was started long 
before quantum mechanics was developed and will undoubtedly persist. The 
nomenclature arose because of the appearance of the spectral lines observed 
due to optical transitions between various levels. The s states are respon- 
sible for a series of transitions that give very sharp lines, the p states 
produced very strong lines called the principal series, the d states pro- 
duced a series of lines fuzzy or diffuse in appearance, and f stands for a 
series of lines known as the fundamental series. Higher angular momentum 
states are normally unobserved and therefore remained unnamed; these are now 
designated in alphabetical sequence: g for 2 = 4, h for Z = 5, etc. Single- 
electron atomic term symbols are designated nZ, where n is the total quan- 
tum number and the angular momentum is designated by the spectroscopists as 
s, p, d, f, etc. Thus a ground state electron is (Is), the first excited 
states are (2s) or (Zp), the next level can be (3s), (3p), or (3d), and so 
forth. 

The electrons in multi-electron systems have wave functions with 
properties similar to the one-electron wave functions and the total wave func- 
tion can be approximated as a product of single-electron wave functions. Thus 
the ground state of two-electron systems such as He I, Li 11, Be 111, etc. 
(i.e., neutral He, Li+, Be++, etc.) is known as a (ls12 configuration, signi- 
fying two electrons in the ground state wave function with paired spin. 
According to the Pauli principle, no more electrons can occupy the (1s) state 
in the same physical space burrounding the nucleus, so subsequent electrons 
added to the system nust occupy the two available (2s) states, then the six 
available (2p) states, then the two (3s) states, the six (3p) states, the ten 
(3d) states, and so on. Ground state configurations for the first few neutral 
atoms of the periodic table of elements are given, for example, in table 7.1. 
A similar sequency of electron configurations occurs for the singly ionized 
atoms He 11, Li TI, Be 11, B 11, etc., for the doubly ionized atoms Li 111, 
Be 111, B 111, etc., and so on. A sequence such as He I, Li 11, Be 111, B IV, 
stc., is known as an isoelectronic sequence; the same number of electrons are 
involved and occupy similar states; only the energy levels are depressed as 
the nuclear charge grows larger. 

For heavier atoms, the electrons perturb one another so that the lowest 
energy state does not sequentially follow the same order as the lowest energy 

1 configuration of one-electron states. The outer electrons with high angular 
I momentum ara more effectively screened from the nuclear charge by the inner 

electrons than are thc outer electrons with low angular momentum. Thus, 
starting with potassium, the outer electron seeks the more tightly bound 
(lower energy) (4s) state in preference to the available (3d) states. The 
similar chemical and magnetic properties of ferrous metal and rare earth 



Nuclear charge Atom Electron configuration shell , '  
Z K L M a  
1 H (18) 
2 He (18): 
3 L i (18) (28) 
4 Be (18) (28) 
5 B (18); (28) (2~) 
6 C (18) (283 (2~) 
7 N (18); t28)2(2~) 
8 0 (18) (28) * (2~) 
9 F (18) (28) CP) 
10 Ne (18) (28) (2~) 

I 11 Na (18) (283 (2~) (38) 
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sequences of elements are related to the exsitence of simiiar configurations i 

I 
I 

of 8 and p electrons in the high quantum number shells, while lower quantum 
I i : 

number orbits with higher angular momentum remain incompletely filled. 
i ! 
I *  

To see how these one-electron wave functions are useful in approximating 
multi-electron wave functions and classifying their energy states, cmsider 
two-electron atoms (such as He I, Li 11, Be 111, etc.) as the simplest example 
of bound state multi-electron systems. First, consider total wave functions 
that are simple products of two one-electron wave functions; then consider 
linear sums of such product wave functions that satisfy the Pauli asymmetry 
principle, which improve the simple product wave functions,as a basis for 
classifying and modeling multi-electron systems. 

7.4 TWO-ELECTRON ATOMIC WAVE FUNCTIONS 

I 
The Hamiltonian operator for two electrons moving in the field of nuclear 

charge 2, where distance is given in units of a (eq. (7.7)) and the poten- 
tial in units of e2/a is, neglecting the effects of electron spin, 

where rl and r2 are the distances between the nucleus and each electron and + 
r12 is the distance between the two electrons, - r21. The term vi2 is 
the Laplacian operator in the variables r;, e;, and $i; to the approximation 
nuclear mass is considered infinite, -(1/2)vi2 represents the kinetic energy 
of the ith electron. 



- (a/ 

9. 
*\. 

The average effect of each electron is to partially screen the central 
;$ 

charge from the other electron and, to a first approximation, this situation + 
is expected to be modeled by i I 

! 

1 where bl and b2 are the effective screened nuclear charges seen by electron 1 ;  
1 and 2, respectively, both somewhat smaller than the actual nuclear charge 2. 

$ - 1  When the Hamiltonian can be separated into a sum of uncoupled terms in this 
. ,.. ,.-- manner, a solution to the Schroedinger equation is the product of solutions to 

each term of the sum (see problem 6.1 where the Hamiltonian for vibrating po3.y- 
- I atomic molecules is assumed to be separable into normal coordinates): 

I 

1 

For the ground state of He-like atoms (Re I, Li 11, Be 111, etc.), both ,4" 
1 electrons occupy the same quantwn cell of physical space and we assume that 

I 1 each electron "seesu the same screened patential (bl  = b2 = b ) .  The wave 
t 1 function solution to the Schroedinger equation with the approximate 
* f Hamiltonian of equation (7.23) is then 

i 

The two terms of the approximate Hamiltonian operating on this wave function 
each yield 

and the total energy for the lround state predicted by this model is the sum 
El + E2 = -b2, in units of eL /a .  

Problem 7.2: Prove that the Hamiltonian in equation (7.23) operating on the wave function in equation (7.25) 
in the Schroedinger equation H* - E* yields the total energy -b2.  

The difference between the ground state energy of the helium-like atom 
and the ground state energy of the single-electron system for the same nuclear 
charge Z is an experimentally known quantity, which we use to determine the 
screened charge b. The ground state energy after one-electron detachment 
(where the wave function takes the form C eeZr) is rigorously given by 

Thus the one-electron detachment energy I is 



For He I, 2 3 2 and I is just the energy of single-electron ionization to 
He 11, known to be 24.58 eV or 0.903 units of e2 /a .  Thus the value of b 

1 which fits this model to observed He energy levels is 
I 

b = = 1.704 (7.29) 

The average energy of a given trial wave function J, obtained with the 
exact Hamiltonian (in this case, eq. (7.22)) is the integral 

According to the variational method (refs. 2 and - 4), the best trial wave func- 
tion of a given form is the one that minimizes E. In the present case, the 
variational method gives Z1 = 1.688, not very different from that given above 
for the simple sczeened charge model of the Hamiltonian. Of course, a small 
difference in the exponent b makes a large percentage difference in the wave 
function at large r. In those regions, the variational wave function would 
be closer to reality than the screened charge type of wave function. Consid- 
erably better agreement with observed energy levels can be obtained by adding 
some additional terms to the trial wave function used in the variational 
method. However, the involved mathematical exercise required to calculate 
these variational wave functions does not teach us much additional physics, 
and the method is not very suitable for developing approximate excited state 
wave functions. (The variational method can be used for excited states by 
imposing the requirement that the trial wave function be orthogonal to the 
trial wave functions for all lower-level states and minimizing the average 
energy. However, the errors are cumulative in this case and the excited state 
wave functions beco~e rather poor approximations, even when very complex func- 
tions are used.) To understand and classify excited-state, two-electron sys- 
tems, we return to solutions of the approximate Hamiltonian given in 
equation (7.23). 

Usually, the only excited states deduced from observed transitions are 
those where one electron remains in the ground state configuration (1s) while 
the other is promoted to an excited state configuration (nZ). In this case, 
a reasonably good approximation is to assume that the inner, or ground state, 
electron sees the full nuclear charge 2, while the outcr, or excited, elec- 
tron sees the screened charge b which is less than 2, and can be fit to the 
actual energy level by use of the approximate Hamiltonian. We can anticipate 
that the inner electron will neutralize almost one full charge of the nucleus 
in the outcr regions where the excited electron probability is high, and that 

l ~ h e  nomenclature He I, He 11, He I11 is a spectroscopic notation merely 
signifying the neutral state, the singly ionized state, and the doubly ionized 
state of helium. This notation has no connection with the He I and He 11 
notations used to signify different phases of liquid helium near the critical 
temperature in section 3.7. In atoms with more electrons, the notation con- 
tinues with IV, V, etc., representing the triply ionized state, quadruply 
ionized state, ctc. of the atom, respectively. 



b will be very nearly Z - 1. The product wave function for the excited 
state configuration (la) (n2) is taken to be 

The separable Hamiltonian to be used with this have function is ! . .  
I -  . , 

I f 

The energy obtained with this Hamiltonian is 

and the constant b can be fit to the observed energy levels. For example, 
the first excited state configuration (!J) (28) for He I is observed to occur 
at E = -2.124 e2/a, and a value of IJ 0.996 fits equation (7.33) to this 
level. For higher excited states, b 1s found to be unity, suggesting that 
for these states the outer electron is well approximated by a purely hydrogen- 
like wave function and the interaction term r;: in the exact Hamiltonian 
(eq. (7.22)) can be accounted for quite well by the screened charge approxima- 
tion. This model can be extended to more electrons, and Slater and Frank 
(ref. 5) have suggested some empirical values for the screening parameters for 
various hydrogen-like wave functions which can be used to build up simple- 
product-type wave functions for the multi-electrolr case. However, these wave 
functions are not very exact, and even for purposes of classifying energy 
states, they lack an essential property - namely, the asymmetry property 
required by the Paul i principle. Therefore, we construct 1 inear combinations 
of product-type wave functions that have the required symmetry to understand 
the role the Pauli principle plays in classifying states. The wave functions 
obtained are considerably better than the simple one-ten products. However, 
the best wave functions are obtained by the numerical Hartree-Fock method 
(ref. 6) or refinements of that method (ref. 7). 

Again consider the two-electron case as the example for the multi- 
electron system in general. Let u and v represent the spatially dependent 
part of the one-electron wave functions used to construct the total wave 
function and a and 0, the electron spin functions. A linear combination of 
matrix elements satisfying the Pauli principle that the rota1 wave function be 
asymmetric is 



The asymmetric function ll- vanishos if u = v ;  however, if u Z v, th:. 
one-electron spin states could goth be a or both be 8. Thus two additioni 
asymmetric states are permitted by the Pauli principle: 

r I 
2 . C 

The symmetric state J18 cannot exist with electrons in the same spin state, 
as the wave function vanishes in this case (let a = 0 in eq. (7.34a)). Thus 
the asymmetric states form a triplet set, while the symmetric state is a 
singlet. lle symmetry properties that should be assigned to wave functions 
associated with observed levels of He I, for example, are immediately apparent 
from the singlet and triplet grouping of these levels. 

1 

The mathematical character of the Pauli symmetrized wave functions 
sirygests that each electron is partly in wave function u and partly in wave 
function v .  This characteristic is known as electron exchange. The effect 
of exchange is to split the singlet energy levels from the triplet levels. 

u e i - '  w 
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7.5 ENERGY LEVFVS OF TWO-ELECTRON SYSTEMS WITH EXCHANGE 

tL 5 - h - -- --- --L- 

where the index i in u(i) or v(i) indicates that these one-electron factors 
are functions of the coordinates of the ith electron, The wave function 
obtained when the matrices are added is designated JIB: 

$8 = [u(l)v(2) + u(2lv(l)l [a(l)B(2) - a(2)B(l)l (7 .34a) 

where subscript 8 denotes that the spatially dependent part of the wave 
function is symmetric. The two-electron spin function is then asymmetric in 
accord with the Pauli principle. The function obtained when the matrices are 
subtracted is designated $a: 

11, I [u(l)v(2) - ~(2)v(l)l [a(l)B(2) + a(Z)fl(l)l (7.34b) 

where subscript a denotes asymmetry of the spatially dependent part of the 
wave function. The two-electron spin function is symmetric in this case. 

In the last section, linear combinations of one-electron wave functions 
were found to satisfy the obser~ed symmetry properties of multi-electron sys- 
tems. Now, we derive expressians for the energy of these approximate, symme- 
trized wave functions for the two-electron system. The effect of spin 
moment us^ on energy is neglected for the moment so the Hamiltonian can be 
expressed as a function of the spatial coordinates of electrons 1 and 2 only. 
Let 



where 2 represents  an average scrsened charge-seen by both lec t rons  , and 
the  perturbat ion HI is a symmetrical function of rl and Q, such a s  Pi!, 
added t o  account f o r  coupling between the  electrons.  The t r i a l  wave function I 
t o  be used i n  t he  Schroedinger equation is 

where t h e  p lus  s ign is  a s s x i a t e d  with t h e  s i n g i e t  function and t h e  ne-a- f 
t i v e  s ign with the  t r i p l e t  function rir, (as discussed i n  sec t ion  7.4). The I 

appropriate two-electron spin function is a mul t ip l ica t ive  f ac to r ,  but s jncc  ! 

spin coordinates do not en t e r  t he  approximate Hamiltonian used, tile sp in  func- i 
t i ons  do not inf luence the  ca lcu la t ion  of  energy and a r e  omitted f o r  mathernat- r 

i c a l  convenience. Tho functions u and v a r e  now taken t o  be normalized 
one-electron :unctions f o r  unperturbed s t a t e s  about t he  cen t r a l  charge 2: 

i 

Normalizing the  t o t a l  wave function requi res  mul t ip l ica t ion  by t h e  
reciprocal  of  t he  in tegra l  

where S is  the  overlap in t eg ra l  

s = /uvr2 s i n  6 dt~ d+ dr 

which, i n  the  present case,  is e i t h e r  ! o r  0, depending on whether u and v 
a r e  t he  same function o r  not .  In problem 7.3, r e  consider one-electron wave 
functions f o r  e lectrons moving i n  the  f i e l d s  of d i f f e r en t  e f f ec t ive  nuclehr 
charges. Then u and v a r e  not orthogcnal i n  general,  and the  overlap i n t e -  
g ra l  may be f i n i t e  even where u and v a r e  d i f f e r en t .  

Subs t i tu te  t he  wave function of equation (7.36) and the  Hamiltonian of  
equation (7.35) i n t o  the  Schroedinger equation to  obtain 

The value of E given in equation (7.40) is not a constant a:-. it should 
be i f  were an exact solut ion t o  the Schroedinger equation. However, the  , t 

average value of  E i s  a constant t h a t  i s  taken t o  be an approximation t o  the  4 

t r ue  eigenvalue. Multiply equation (7.40) by $: 
V 
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I 

s .  
J 

B 
$Bg = (Eu + Ev)(u12~22 + ~ ~ ~ 2 4 ~ ~ )  + ( R ~ u ~ ~ v ~ ~  + H ~ v ~ ~ u ~ ~ )  

:r 

f2[(Eu + EV)u1V1~2V2 + R ' U ~ V ~ U ~ V ~ ]  1 

Integrate equation (7.41) over all space to obtain ->: 
$ 

K J 
= (Eu + Ev) + ' ,-f (7.42) r 

+ S  1 k S  .. .', 

; ,< 

where K and J are the Coulomb and exchange integrals 

K = $ H ~ u ~ ~ v ~ ~  d ~ l  dt2 s $ R ~ v ~ ~ u ~ ~  d ~ l  dt2 (7.43) r ?  

The Coulomb integral desives its name because, when Rt = 1% - $1 I the 
integral represents the average Coulomb repulsion between a charge distribu- 
tion u2 and a charge distribution v2. However, the name is retained for 
arbitrary functions Ht, and the two integrals that define K in equa- 
tion (7.43) are equal provided Ht is symmetrical in rl and q. The 
exchange integral derives its name because the splitting of energy levels 
between symmetric and asymmetric states that results when electron exchange 
effects are included in the wave function is given by this integral. For the 
ground state, u and v are the same function and only the singlet state is 
allowed: 

For excited states, u and v are different functions and 

The exchange integral can be approximately evaluated as half the differ- 
ence between observed singlet and triplet state energies: 

while the Coulomb integral can be estimated from the difference between the 
observed energies and the calculated one-electron energies as 

A somewhat better approximation for the wave function is obtained when 
u and v are taken to be one-electron wave functions for electrons moving in 
the field of different effective nuclear charges. The results of this approx- 
imation are sketched in problem 7.3, and the details of the derivation, 
following the above pattern, are left to the reader. 



, i . )  

1 
r. -- ; . *  :- '  ' % .  L , .;* -i::q; *', T 

*C- YW.4, . ,. 
' .-. --. #.* * - 7 7 4  

.-+qir" . * - ...- I"" . . . I : .  i 
4 k -.* .. . .  ' . '  

--.. - -- .- - - -- ..__--.___.-__1.--__ -_ _--... - _  ' ,,:.A 
- b .  

*: 
Problem 7.3: Again let the Hamiltonian be given by equation 17.351 and assume a wave function of the form of i 

oquation (7.36). Now, however, let u and v be single-electron wave functions for electrons moving in the field 
of central charges a and b, respectively: 

1 , -  where n, and n are integer quantum numbers associated with the wave functions u and v ,  respectlvely. 
Generally, a an$ b are different and the overlap integral S (eq. ( 7 . 3 9 ) )  is finite unless the spherical harmonic i ,:: 
parts of the wave functions a m  orthogonal. However, the wave functions for different states maximize at differ- 
ent radial distances and oscillate in sign at different positions, so the overlap integral can be anticipated to 
be sizably less than unity and to grow smaller as the difference between quantwa numbers increases, that is. as one 
of the electrons becomes more highly excited. 

r :: 
Show that the average energy obtained from the Schroedinger equation is now 1 .: 

J + ( a  + b - ~ z ) s ( ; )  
E = (Eu + Et,) + f uv (7 .42d)  

1 f 5 2  1 f 52 

where the averages (l/r),,. (l/r)vv, and (l/r)uv are given by 

and X and J are given by equations (7 .43)  and ( 7 . 4 4 )  as before. Note that if 

and 

the result reduces to the same form as equation ( 7 . 4 2 ) .  According to the variational principle (refs. 2 and 4 ) ,  
the average energy given by the approximate wave functions used with the exact Hamiltonian in the Schroedinger 
equation is always greater than the true eigenvalue. With a and b both adjustable, the energy of the ground 
state can be minimized below the minimum value obtained when these are equal, and a somewhat better wave function 
is thus obtained. For highly excited states, one expects a = Z and b = Z  - 1 to be reasonable first 
approximations. In this case, K' = K - (l/r)vy and J'  = J - (l/r),#. 

Y 

To t h i s  point ,  coupling between electron spin and o r b i t a l  angular 
momentum has been ignored. This coupling produces small, addi t ional  s h i f t s  i n  

A 

energy leve l ,  with the  r e s u l t  t h a t  t r i p l e t  s t a t e s  appear a s  a  t r i o  of c lose ly  -,.? 

spaced s t a t e s  r a the r  than a  s ing le  energy leve l  of degeneracy three.  
7 )  J .<: 

B 

7.6 EFFECTS OF COUPLED ELECTRONIC ANGULAR MOMENTUM 

i r I 

A charged p a r t i c l e  with angular momentum, e i t h e r  a s  a  r e s u l t  of spin o r  7 o r b i t a l  motion, is  observed t o  have a  dipole  moment with an associated mag- i + n e t i c  f i e l d .  The dipole  moment of an e lec t ron  in t e rac t s  with the  magnetic 
dipoles of the o ther  e lec t rons  and with the  magnetic f i e l d  produced by the  i 



relative motion of the nuclear charge. The dipole moment v associated with 
1 the orbital angular momentum p is observed to be 

i 
1 The constant ratio between dipole moment and angular momentum, e/2rnec, is 

known as the gyromagnetic ratio. 

I 
Problem 7.4: The dipole moment generated by a current i circulating in a single plane is defined as 

where A is the area swept out by the current loop. Show that for a charge e moving at constant velocity and 
in a circle of radius a, the dipole moment is given by equation (7.47). This same relation holds for any orbit 
with constant angular momentum, that is, for the motion of an electron in a central field. 

Spin angular momentum also produces a magnetic dipole but in this case 
quantum effects lead to a gyromagnetic ratio twice as large as for the orbital 
angular momentum: 

Problem 7.5: Assume a hypothetical classical particle with an arbitrary spherical mass distribution and 
arbitrary spherical charge distribution. Show that the gyromagnetic ratio for this particle spinning with a 
circular frequency w is 

(rb)e/(r2)e 
L..L-- 
P Zmc (r~),,/(z~z), 

where (#), and (F)~  signify the nth moment of F with respect to the mass distribution and the charge 

distribution functions, respectively. Show that if charge is uniformly distributed over the surface at the radius 
roe and mass is distributed inversely proportional to the radius out to r,, the observed gyromagnetic ratio is 
satisfied. Show that a similar result can be obtained from cylindrical charge and mass distributions if the 
charge is uniformly distributed over the edge of a disk and the mass is uniformly distributed throughout the disk. 
These distributions have no particular physical significance; they merely illustrate types of hypothetical 
classical particles having the observed gyromagnetic ratio for spin momentum. 

The coupling of angular momentum can be illustrated by a semiclassical 
model for coupled spin and orbital momzntum in a single-zlectron atom. The 
electron moving 'n an electric field E with velocity v experiences a 
magnetic field $ : 

Since the field results from a spherically symmetric potential V(r), 

-+ E x v  H=- 
C 

? 
The magnetic field becomes, 



-f -+ 
The cross  product r x v is  ju s t  t he  angular momentum divided by the  mass, 
which remains constant i n  t h e  cen t r a l  f i e l d :  

The poten t ia l  energy of coupling between the  spin magnetic moment c8 i 

and the  magnetic f i e l d  i s  r' 

! 

grad  V 
AE=(;~  if)=^( m 2 ~ 2  ) g o  $ 

where ( (grczd V) /r) is the  averaged value: 

grad V ( ) = $ $ * ( e ) + d r  r 

-+ -+ 
Quantum mechanically, p and s art: l imited t o  t he  values 

where I* and z* a r e  vectors  with the  magnitudes dZ(Z + 1) and 48(8 + l ) ,  
respect ively,  and Z is any in teger  while s = 1/2. The vector  product is 
a l so  l imited t o  quantized values with t o t a l  angular momentum @, where J *  
is  a vector  of magnitude J j ( j  + 1) and j takes the  values from 12 + 81 t o  
I Z - sl i n  in teger  s teps:  

I 

, 

-+ f 
Subs t i tu t ing  the value of 5* . Z* from equation (7.56), one obtains  f o r  AE: i 

I 
A = ( )  + 1) - Z(2 + 1) - s(s + 1)] 

2m c 

The measured value of AE, f o r  a given Z and s and various allowed 
values of j ,  i n  e f f e c t  provides a measure of t he  average ((grad V)/r). This 
may be e i t h e r  pos i t ive  o r  negative, depending on the  dave functions involved. 
For a s ing le  electron moving i n  t he  f i e l d  of a fixed cen t r a l  charge Ze, t h i s  
becomes 

I f  r i s  expressed i n  u n i t s  of the  Bohr radius a and energy i n  u n i t s  of  two 
Rydbergs, e2/a: 



where a is the fine structure constant e2/Ac or e?i/mm, with the value 
7 , 2 8 3 ~ 1 0 - ~ .  

Problem 7.6: Pauling and Wilson (ref. 2) glve the result for hydrogen-like wave functions 

The energy levels for these wave functions relative to the ground state level, neglecting 2,s coupling, is j i :  

when R is the Rydbcry constant. Use R = 109,679 cm-1 for hydro :n and calculate the energy levels with 2,s 
! 

coupling for the 2s(.i a lli;. L p ( j  = 1/2), and 2 p ( j  = 3/?) levels. Compare kith the ohscrvcd levels. t ' 
Observed iiydrogcn Energy Levcls ! .* 

J Configuration - Energy nhoic prourld sttitc, cm-I .. ~p 

1 s 1/: 0 
2F 112 $??58.907 
2s 1/2 82258 .942  
2P 31 2 52259 .272  

The 2.8 coupling is seen to he very small in hydmpcn. Ilowcvcr, it :ncrc:ises with nuclear charge as z4 and 
becomes more pronounced in heavier atoms. 

I 

? f 

f In multi-electron atoms and molecules, the magnetic dipoles due to spin 
and orbital electron motion all interact with one another as well as with the 

I - 1. magnetic field due t -  the nuclear charge. For example, the dipole moment of k . . 
r 
ii [ electron i has a mgnetic field at the location of electron j ,  with the 
2 components 

H~ = - ' s i n  e i j  
rij  3 

!, 
where P i j  is the distance between the electrons and 8 i j  is the angle 
between the dipole moment Ci and the radius vector ;ij .  

,. 

f 

The potential energy of coqling between a given dipole moment and 
the magnetic fieids of the ot.her dipoles is : f 

%* 

F The averages are more difficult to evaluate in this case than in equa- 
2 

3 tion ( 7 . 5 2 ) ,  which involved the coupling of a single electron's spin with its 
own orbita.1 motion. From equation (7.60), the averages for mu1 ti-electron 
atoms are seen to involve averages such as r j j  and averages over functions 

wu 
of the angles Oij, which take quantized values in accord with equations such 
as ( 7 . 5 6 ) .  



where Z i  i s  t h e  in teger  quantum number of o r b i t a l  momentum f o r  e lec t ron  i, 
i and the  project ions Z i  cos y i  a r e  allowed t o  take a l l  in teger  values between 

8 + Z i  and - t i s  i n  accord with the  usual quantum se lec t ion  r u l e s  i n  t h e  absence 
of spin perturbat ions.  

' a. 
i 

Similar ly,  the  sp in  vectors a r e  coupled t o  give a t o t a l  r e su l t an t  sp in  
vector  2* of  magnitude ~S(P + l ) ,  with a constant spin quantum number S 
t h a t  may be expressed a s  

" . . . <  ' :. . \.. 
, ' "." +..*. ' .i.' .: .: ..?, .- . . e" -,.a, 

;. :: : *y ... ( . .,, 
..p ,' : ;.. , 

In t h i s  case, the  project ions si can take only the  values +1/2 and t h e  sum 
is  an algebraic  sum. 

- 
Some useful  q u a l i t a t i v e  ideas about t h e  grouping o f  energy l eve l s  i n  

multi-electron systems can be gained by considering a model i n  which s t rongly  
in t e rac t ing  dipoles  a r e  coupled t o  give a r e l a t i v e l y  constant r e su l t an t  angu- 

Final ly ,  t he  vectors  i* and ?* a r e  cou led t o  give a t o t a l  angular se momentum vector  3* with the  magnitude J ( J  + I ) ,  where J  is a t o t a l  angu- 
l a r  momentum quantum number t h a t  takes a l l  values from I L  + S( t o  (L - S (  i n  
in teger  s teps .  According t o  t h e  uncertainty pr inc ip le ,  3* must precess about 
a f ixed ax i s  i n  space and only i ts  project ion J  on t h i s  ax i s  i s  t r u l y  con- 
s t a n t ;  the  vector  project ions L and S precess slowly about t h i s  ax i s  a t  an 
angulak ve loc i ty  t h a t  increases  with the  s t rength of  t h e  coupling between sp in  
and o r b i t a l  momentum. The energy change t h a t  r e s u l t s  from t h i s  weak coupling 
is taken t o  be proportional t o  the vector  product of t he  magnetic moment asso- 
c ia ted  with t o t a l  spin and the magnetic f i e l d  associated with the  t o t a l  
o r b i t a l  momentum o r ,  i n  other words, t o  the  vector  product 3* x* given by 
an equation s imi la r  t o  (7.56): 

$ :  ,:I l a r  momentum. Then weaker in te rac t ions  a r e  accounted f o r  by coupling these  
+, ' . . r e su l t an t  vectors  so  t h a t  they precess slowly about a t o t a l  angular momentum .: / I vector.  For example, i n  l i g h t  atoms the  coupling between t h e  sp in  of  an elec-  " 1 
G '. " t r on  and its own o r b i t a l  motion was seen t o  be very weak (see problem 7.6). 

'h 1 The averages involved i n  equation (7.61) give much s tronger  coupling between 
1; 

6. I t he  o r b i t a l  motion and t h e  o r b i t a l  motion of t he  o ther  e lec t rons ,  a l s o  between 
k ! t he  spin and the  sp in  dipoles  of  t h e  o ther  e lectrons.  Consequently, a s  a 
i I. I f i r s t  approximation, t he  o r b i t a l  momentum vectors  a r e  assumed t o  couple, a s  

,Y: I - - -. they would i n  t h e  absence+of spin perturbat ions,  t o  i ve  a r e su l t an t  o r b i t a l  
ic . . angular momentum vector  L* with the  magnitude L(L + 1 , where L is a con- 

{ sks s t a n t ,  integer ,  t o t a l  o r b i t a l  momentum quantum number, which may be expressed 
a s  the  sum z 



! 
i - 
I 
i 

The relative spacing between energy levels given by equation (7.64) is known 
as the Land6 interval rule. Whether the energy shift is positive or negative 
depends on averaged quantities such as equation (7.58). 

t 

The coupling model above is known as Russell-Saunders or LS coupling. i 
For heavy elements, the spin-orbit coupling increases as the fourth power of 
nuclear charge (see problem 7.6) and can exceed the Coulomb interaction per- 
turbation. This may be considered a consequence of the large electron veloc- + 
ities that occur near the nuclear center. When the velocity becomes an I 

appreciable fraction of the limiting velocity c, the magnetic fields experi- 
enced by the electron are very strong (see eq. (7.49)). In this case, each 
electron spin couples strongly with the electron's own orbital momentum to , v 

form a resultant angular momentum quantum number j :  

B The total angular momentum quantum number J is then a sum of projections of 

k the individual ji on the steady axis of precession: i 

J = C.ji cos y i  
i 

t. 
3 Where again the projections ji cos y i  take only values between ji and -ji 
& 

%. ., in integer steps. This type of coupling that occurs in heavy atoms is known 
as j - j coupling. As the reader can readily imagine, intermediate weight 
atoms exhibit a kind of mixed coupling where the different coupling energies 
are roughly equal, and none of the angular momentum components are even 
approximately constant, except for the total. (The complex exchange of angu- 
lar momenta that occurs in this case is analogous to asymmetric tops when the 
moments of inertia are all sizable and unequal.) 

In light atoms, the Coulomb and exchange integral corrections treated in 
the last section establish the pattern of energy levels; the angular momentum 
coupling produces a small splitting of otherwise multiply degenerate spin 
states in accord with the Land6 interval rule (eq. (?.64)). Deviations from 
the Land6 interval rule indicate that the simple LS coupling approximation 
is breaking down. The energy levels are still relatively easy to classify so 
long as the multiplet splitting is less than the exchange effect. However, 
eventually, in heavier atoms the j - j coupling predominates and the differ- 
ent multiplet states become intermingled with levels of other electron con- 
figurations; in this case, identification of levels is much more laborious. 
A more complete discussion of LS and j - j coupling and rules for multiplet 
splitting has been published by Condon and Shortley (ref. 8). 

7.7 LS COUPLED ELECTRON CONFIGURATIONS 

Electron configurations can be represented in various ways. One way is 
to designate for each electron the total quantum number n, the orbital quan- 
tum number I, the magnetic quantum number m (i.e., the projection of I on 
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some fixed axis), and the spin state 8 .  The total configuration for a 
multi-electron system might thus be expressed as 

However, where LS coupling is a reasonably good approximation, a more mean- 
ingful notation is to designate the quantities that are approximately constant, 
namely, the total orbital momentum quantum number L, the total spin quantum 
nwnber S, and the total angular momentum quantum number J. By convention, 
the electronic configuration is described by a term of the form 

i The orbital momentum L is designated by capital letters S, P. D, F, G,. . . 
depending on whether L is 0, 1, 2, 3, 4,. . ., respectively. This notation 

I 

i obviously follows the conventions developed for single-electron spectra. The 

i capital letters signify that the total orbital momentum for all the electrons 
is described. The superscript 2s + 1 and subscript J are integers or half- 

! integers that describe the units of total spin and total coupled orbital-spin 
i . .  momentum, respectively; 2s + 1 is used rather than S because it describes 
i 

the multiplicity of levels with nearly the same energy observed for light 
, , atoms by the spectroscopist. The total degeneracy of a given LS configura- 

h 
1 tion is 

I Some general rules for the relative energy of the different LS coupled 8 
f 

configurations can be formulated, but occasional exceptions to these rules are y 
observed. The configuration with the maximum total spin, S, normally takes 4 a 
the lowest energy. Next the configurations with the maximum orbital momentum, 
L, usually take the lowest energy. Finally, the spin orbit coupling can have 2 

either a positive or negative coefficient in the Land6 interval rule as dis- (4 
cussed previously. Usually, the lowest value of J has the lowest energy in - 
atoms with incomplete outer electron shells, (i.e., a positive coefficient 
occurs for the Land6 interval rule), but the order reverses as the outer elec- 
tron shell fills (a negative coefficient then occurs for the Land6 interval i ii 

rule). $ ', 
a 

I The Pauli exclusion principle places some restrictions on the ways 
angular momenta can couple. For this reason, we must consider some differ- 

! ences between equivalent and nonequivalent electrons before classifying the 
levels for specific atoms. Equivalent electrons are those electrons with the 
same total quantum number n and the same orbital angular momentum quantum 
number I ;  they may take the same or different magnetic quantum numbers m 
and spin state 8 .  However, according to the Pauli principle, equivalent 
electrons cannot simultaneously take the same magnetic and spin states. Non- 3 
equivalent electrons are those with different total quantum numbers n; these $ 
electrons may take the same or different values of 2 ,  m, and s without 
violating the Pauli principle, of course. As an example, consider two equiva- I 

lent p electrons with quantum number n, that is, the configuration (npj2. 
There are 15 different assignments of the magnetic quantum numbers m and the 



spin quantum states (a or 8) allowed by the Pauli exclusion principle in this 
case. These are listed in the first three columns in table 7.2. The sum of 
the projections m and of the spin quantum numbers *1/2 are shown in the next 
two columns of the table. These are related to the total L and S values as 
suggested in the last column. However, the one-to-one correspondence shown is 

TABLE 7.2. - EQUIVALENT ELECTRON (y) CONFIGURATIONS 

% 
Y 1 
i 

i h. 

1 
somewhat misleadin ; configurations 3 and 8 and 5 and 14 should really be i * 
considered mixed !D and 3~ states, while 1, 4, and 11 are mixed IS, ID, and ! 

3~ states; or, conversely, the IS state is a mixture of configurations 1, j 
4,and11, etc. Theone-to-one correspondence shown merely emphasizes that the { 
correct number of degenerate states has been accounted for. The appearance of ,t i ,,=! 

r mixed states when the coordinate system or nomenclature is changed is common 1 ,  % 

in quantum mechanics; it reflects the fact that the set of eigenfunctions 
i 

chosen to represent the allowed set of quantum states is not unique. Any set 9 

: can be expressed as a linear combination of eigenfunctions belonging to an 9 6 ,r ,: 

equivalent set. For example, eigenfunctions in Cartesian coordinates can be 3 a w, ; 

expressed as a linear combination of eigenfunctions in spherical coordinates. ; 4 

Similarly, the IS, ID, and 3~ stat?s in table 7.2 represent linear combina- 1 i' 
tions of (np ms) (n p m 1  s t )  configurations. The main point is that no states 1 

2 .  with C m  = 2 and C s  = 1 can exist according tc: the Pauli principle, and so '$ the D state must be a singlet. However, a state with C m  = 1 and Cs = 1 p ,  4, , . does exist, which requires that a 3~ state exist. Finally, the remaining .4 k .: 
number of configurations are all required to account for the total degeneracy 4 
of the IS, ID, and 3~ states; in 0the.r words, all possible states have been i, * 
accounted for and the IP states, as well as thr 3~ and 3~ states, do not !; 
result from the (np12 equivalent electron configurations. 

:L 1 
, - 

m LS 
Index x m  zs coupling 

1 0 -1 notation 

1 a 8 
2 a8 

Is0 

3 a 8 
4 a 8 1 ID2 0 
5 a 8 - 1 0  
6 a8 -2 0 
7 a a 1 1  
8 8 a 
9 0 0 
10 a a 
11 B a 3 p 2 , ~ , ~  
12 0 B 0 -1 
13 a a - 1 1  
14 P a - 1 0  
15 8 8 -1 -1 



The t r i p l e t  3~ s t a t e s  would normally be expected t o  have the  lowest 
energy of a l l  the configurations tiecause they have the  maximum t o t a l  
spin value S. The two equivalent . p  electron s i tua t ion  is charac te r i s t i c  of 
an incomplete electron she l l ,  i n  which case the  Land6 in terval  r u l e  coeff ic i -  
ent would l ike ly  be posi t ive and the  t r i p l e t  level  energies would increase i n  
the  order 3 ~ 0 ,  3 ~ 1 ,  and 3~2. Of the  two s ing le t  s t a t e s ,  the  configura- 
t ion  would normally take the  lowest energy because it has the  higher t o t a l  
angular momentum value L. 

Consider next the  nonequivalent electron configurations, such as (np) 
(nlp),  where the  principle quantum number is di f ferent .  In t h i s  case, the  
spins can be equivalent and the  principle quantum-ntunbers,,can be! exchanged t o  
provide additional allowed s t a t e s ,  a s  shown i n  t ab le  7.3. The first 15 con- 
f igurat ions a r e  the same as  in  table  7.2, only a solnewhat more concise nota- 
t ion  (n, 2, m, 8 )  (nl ,  Z 1 ,  m l ,  8 ' )  has been used t o  show the  principle quantum 
numbers more e a s i l  . These a r e  assigned the  same one-to-one correspondence 
with IS, ID, and %P s t a t e s  a s  i n  t a b l e  7.2, again with t h e  understanding 
tha t  these s t a t e s  r e a l l y  represent mixed one-electron configurations. The 
remaining 21 configurations tha t  appear when equivalent spin s t a t e s  and 
exchange of principle quantum numbers a re  accounted f o r  a r e  a l l  needed t o  
match the  t o t a l  degeneracy of  IP, 3 ~ ,  and 3~ s t a t e s  not allowed i n  the  
equivalent electron case. 

, 
i A similar  procedure may be followed t o  determine the  allowed s t a t e s  of  

LS coupling f o r  other equivalent electron configurations (ref .  9). These a r e  
& % -  i 

! 
l i s t e d  i n  table  7.4 f o r  configurations s2, p2 through p6, and d2 through d' O .  
Note tha t  a closed she l l  of electrons always yields the  IS s t a t e ;  a lso  n 

i equivalent electrons give the  same s e t  of s t a t e s  a s  the  closed she l l  l e s s  n 
electrons. Since any f i l l e d  subshell of  electrons contributes zero spin 
momentum and zero o rb i t a l  momentum, the configuration ( s ) ~ @ ) "  has the  same 
terms a s  those l i s t e d  f o r  @)"; the  configuration (8)2(p)6(d)n has the  same 

i terms a s  those l i s t e d  f o r  (d)", e t c .  
1 

Ground s t a t e  atoms of l i g h t  elements consist  of completed subshells and 
one par t ly  f i l l e d  subshell of  equivalent electrons, and thus have terms such 

I a s  given in t ab le  7.4. Excited s t a t e  atoms usually consist  of  one electron i n  
an excite: quantum s t a t e  coupled t o  a core of ground s t a t e  equivalent electron 
subshells,  The o rb i t a l  momentum and the  spin of the excited electron a r e  
coupled t o  the core values i n  a l l  possible ways t o  give the  resul tant  term 
symbols. For example, consider the  configuration (np)2(n1p). This may lead 

I t o  the  following t e n s  ( the core configuration term is given inside the  square 
brackets) : 



TABLE 7.3. - NONEQUIVALENT ELECTRON ( r rp)  (n p) CONFIGURATIONS 

Index - 
1 
2 
3 
4 
5 

, 6 ,: 
7 
8 
9 
10 
11 
12 
13 

I 14 
15 
16 
17 
18 
19 
20 
21 
22 
2 3 
24 
25 
26 
2 7 
28 
29 
30 
3 1 
32 
33 
34 
35 
36 

Configuration LS coupling 
notation 
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TABLE 7.4. - EQUIVALENT ELECTRON TERMS 
Configuration Term symbols 

(8) 2s 
( 8 )  1s 

@)', @I5 2~ 
[P)~B~(P)' IS, l ~ ,  3~ 

@) 2 ~ ,  2 ~ , 4 ~  
@) 1s 
(4 l, (dl 20 ; 

(dl2, (dl8 IS, ID, 'G, 3 ~ ,  3~ 
(dl , (4 ' 2 ~ ,  2 ~ ,  2 ~ ,  2 ~ ,  2 ~ ,  2 ~ ,  'P, 'F 
(d) ' , {d)6  1 ~ B 1 ~ , 1 ~ , 1 ~ , 1 ~ , ~ ~ , 1 ~ , 1 ~ , 3 ~ , 3 ~ , 3 ~ , 3 ~ B 3 ~ , 3 ~ , 3 ~ , s ~  

2 ~ , 2 ~ , 2 ~ , 2 ~ , 2 ~ , 2 ~ , ~ , 2 ~ , 2 ~ , 2 ~ B 2 ~ B 4 ~ , 4 ~ , 4 ~ B 4 ~ , 6 ~  
1s 

7.8 EXAMPLES OF W COUPLING 

. , 

! 
i 
i 

Several of the light atoms provide good examples of LS coupling. Some 
* 4 are listed in table 7.5 with their ground state configuration and a few of 

i their lower-lying excited states. The energy levels are taken from Moore 
t (ref. 10); small uncertainties in the absolute value for some metastable 
i levels are not indicated. 

The ground state of neutral helium, He I, consists of two equivalent (18) 
electrons. This constitutes a closed s:.ell and can have only the IS c o ~ -  I 

i figuration. Since both spin and orbital momentum are zero, the total angular 
momentum J must be zero. The excited state (l8)(28) configuration lies 

1 lower than the (1s) (2p) configuration since the (28) electron is shielded less 
I effectively from the nuclear charge by the remaining (Is) electron than is the 
I 

1 ( 2 p )  electron. The electrons with different total quantum number are nonequiv- 
! alent and the spins can now add up to either triplet or singlet states. The 
1 total angular momentum of the S states equals the spin, of course, but the 
i J values for the 3~ state can be 2, 1, or 0: the three ways a spin of one 

can add to one unit of orbltal momentum. The superscrip" on the 3 ~ b  and 
'PO states signifies that an odd number of orbital angular momentum quanta 

! occurs in the configuration. The absence of this superscript signifies an 
even nl;mnter. This notdt ion is convenient for spectroscopic purposes because 

, the strong (electric dipole) optical transitions for LS coupled atoms occur 
only between even and odd states. 

The levels of Li I are similar to the hydrogen levels (problem 7.6) ,  
except that some extra levels occur because of the greater degeneracy of 
states available to the outer electron. Li I 1  is isoelectronic with He I and 
has a similar set of levels, but with lower energies because of the greater 
nuclear charge. 
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TABLE 7.5.- LOW-LYING ELECTRONIC STATES OF LIGHT ATOMS 

i 

I .c 

I r 

I 
< ,  

I* . 1 

I ' 
! 
i 
i 
1 * 

: .  

I 

* ' 

! 

1 
I I 

j L 

i 
i 
1 
4 

! 
I 

i 

i 
, 

i 
st 

' 

f 
11 

Configuration 

(l8I2 

(18) f?8) 
t t 

(18) GP) 
t t  

t t 

t t 

(1812(28) 

(18) ( 2 ~ )  
t t 

( la)2  (38) 

(181 ( 3 ~ )  
I t  

(151~(3d) 
I t  

(18)2(28)" 

( la)2  (28) r2sI (2P) 
I t  

I t  

1t 

( 1 d 2  (28) r2s] (38) 
t I  

( w 2  us]2 PSI UP) 
11 

(18) (28) ( 2 ~ )  
I t 

11 

(18) (28) [IS] (38) 

(18)2(281(2p)2 

221 
F ',, 

9 
a, . 
;f 

5 

:::::) 

Term 

Is0 

3s1 

lsO 

3 ~ f  
IPP 

3 ~ 8  

1pp 

2s1 12 

2p! 12 

2p! I 2 

2 ~ 1  12 

2p1 2py/ / 2 2l 
2 ~ 3  12 

205 /2 

1s t  

3 ~ {  

3pp 

3p: 

IP: 

3 ~ 1  

lsO 

2p! I 2 

2p! 12 

4 ~ 1  12  

4p3 I 2 

4 ~ 5  2 

2s1 I 2 

7 1 

Energy, cm'' 

0 

159850.32 

166271.X 

169081.11 

169081.19 

169082.18 

171129.1s 

0 

14903.66 

14904.00 

27206.12 

30925.38 

31283.08 

31283.12 

o 
219'19.4 

21980.1 

21982.5 

42565.3 

52082.1 

54677.2 

o 
16 

28805 

28810 

28816 

40040 
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0 1 

4 

TABLE 7.5.-  UlW-LYING ELECTRONIC STATES OF LIGHT ATOMS - Continued 

Tenn 

3~~ 

3 ~ 1  

jp2 

lo2 

'$0 

5 4  

3 ~ p  
IF! 

3p! 

' P! 
%$j 
3 ~ t  
3 ~ f  

''4 I? 

2D! 12 

2 D ! ~  2 

2p! 12 2p!121 
4 ~ 1  1 2  

"PJ l2 

/ 

2p1 / 2 

2p?, 2 

3p2 

3 ~ 1  

3p0 

I02 

'9 
3s; 

Configuration 

618) ( 2 ~ )  ( 2 ~ )  
*I 

I 1  

11 

I 1  

(1812 (28) (2pi 

(18) 2(28)2 ( 2 ~ )  r2p0] (a) 
II 

II 

I t  

(18) (28) (?v) 
t t  

II 

(18) (2812 ( 2 ~ )  
I t  

I t  

I 1  

I 1  

(18) (2812 (@I I3p1 (38) 
b .  

t  t  

* ,  

I t  

[ 1 8 ) ~ ( 2 8 ) ~  ( 2 ~ ) ~  
I! 

t I  

11 

11 

( 1 ~ ) ~ ( 2 ~ ) ~ ( 2 ~ )  3[4so] (38) 
I t  

/ 
j .  

I ,e 

I 

* 

I 

I 

Energy, en-l 

0 

16.4 

43.5 

10193.7 

21648.4 

33735. 2 

60338.8 

60353.0 

60393.5 

61982.2 

64088.6 

64093.2 

64092.0 

0 

19223 

19231 

28840 

83285.5 

83319.3 

83366.0 

86131.4 

86223.2 

0 

158.5 

226.5 

15867.7 

33792.4 

73767.8 

76794*9 J 



TABLE 7.5.- LOW-LYING ELECTRONIC STATES OF LIGHT ATOMS - Concluded . . 

;I 
-1 

Atom Configuration Term Energy, cm'l 

0 I ( 1 s )  ( 2 s )  (2p)  [ ? S o ]  (3p)  'pi 86625.4 
I I 

5 ~ 2  86627.4 
11 

5p3 86631.0 
I t  

3 ~ 2  88630.8 
I I 

3 ~ 1  88630.3 
I I 3 ~ 0  88631.0 

(ls12 ( 2 ~ ) ~ ( 2 ~ )  3 [ 4 ~ 0 ]  ( 4 ~ )  5 ~ j  95476.4 
I I 's: 96225.5 

F I ( 1 s )  ( 2 s )  ( 2 ~ )  2 p ! / 2  0 
11 

2p! / 2  104.0 

( 1 s )  (28)  ( 2 ~ )  i3p1 ( 3 s )  4 ~ 5  12 102406.5 
I 

4 ~ 3  12 102681.2 
11 

" ~ 1 1 2  102841.2 
11 

2 ~ 3  / 2  104731.9 
I 1  

2 ~ 1  12 105057.1 

Ne I ( 1 s )  ( 2 s )  U P )  'SO 0 

( 1 s )  ( 2 s )  ( 2 ~ )  1 ~ 2 3  / 2 ]  ( 3 s )  [ 3 / 2 ]  134043.8 
11 [ 3 / 2 ] !  134461.2 



The terms of Be I a r e  s imi l a r  t o  He I ,  except t h a t  again some ex t r a  
l eve l s  occur because of  t h e  g rea t e r  degeneracy o f  s t a t e s  ava i lab le  t o  t h e  
ou te r  e lectron,  such a s  t he  l eve l s  of  t he  ( 1 ~ ) ~ ( 2 s )  (2p) configuration. W,en 
the  in t e rac t ion  between the  ou te r  e lec t ron  and t h e  core of inner  e lec t rons  is 
weak, a term specifying t o t a l  spin and angular momentum o f  t h e  core e lec t rons  
can be assigned. In t h e  resent  case, t h e  core of  (18)2(28j e lec t rons  can 
only take  one t e n ,  t h e  $S. However, when cores involve several  p e lec-  
t rons,  several  core terms with d i f f e r en t  energy l eve l s  a r e  possible .  Be I 1  is 
i soe lec t ronic  with L i  I and has a s imi l a r  s e t  of energy leve ls ,  while Be I11 
has a He I - l i k e  set of energy leve ls .  

B I has one unpaired (2p) e lec t ron  i n  t h e  ground s t a t e  and so gives r i s e  
t o  a close-lying doublet of 2~ s t a t e s .  The f i r s t  exci ted l eve l  occurs by 
promoting one o f  t he  (2s) e lec t rons  t o  t h e  (2p) o r b i t .  The two equivalent p 
e lec t rons  can couple i n  t he  3 ~ ,  ID, o r  IS term configurations as indicated 
i n  t a b l e  7.4; coupling the  (2s) e lec t ron  t o  these configurations leads t o  4 ~ ,  
2 ~ ,  2 ~ ,  and 2~ terms. Of these, t he  term 4~ with grea tes t  degeneracy is 
lowest, next is t h e  doublet term 2~ with grea tes t  o r b i t a l  momentum. This 
sequence i s  interrupted by the  ( 1 ~ ) ~  ( 2 ~ ) ~  (3s) exci ted s t a t e  and the  2~ and 2~ 
leve ls  a r e  not observed in  B I. However, a l l  these leve ls  a r e  observed below 
the  ( 1 ~ ) ~  ( 2 ~ ) ~  (38) excited leve l  i n  the  i soe lec t ronic  sequence C 11. 

C I has t he  s e t  o f  terms given i n  t ab l e  7.4 f o r  two equivalent p elec-  
t rons.  Again, the  terms with g rea t e s t  mu l t ip l i c i t y  a r e  lowest i n  energy and, 
of those with t h e  same mul t ip l i c i t y ,  t he  terms with l a rges t  o r b i t a l  momentum 
a r e  lowest. Like B I ,  t h e  f i r s t  excited leve l  occurs when one of  the  (28) 
e lec t rons  is promoted t o  (2p). This gives r i s e  t o  a sequence of terms t h a t  
couples the  remaining (28) electron t o  t he  terms of t h ree  equivalent p elec-  
t rons ,  namely, 5 ~ ,  3 ~ ,  3 ~ ,  ID, 3 ~ ,  and IP. This sequence i s  in te r rupted  by 
t h e  ( 1 ~ ) ~  (2812 (2p) (3s) l eve l s  i n  C I ; t h e  f i r s t  four  terms of t he  sequence 
appear i n  N I1  before t he  (38) exci ted s t a t e  and t h e  complete sequence is 
unbroken i n  0 111. 

In N I ,  the  ground s t a t e  terms comprise the s e t  f o r  t h ree  equivalent p 
electrons a s  given in  t a b l e  7 .4 .  The s t a t e  of grea tes t  mul t ip l ic i ty ,  4 ~ ,  is 
lowest. Of t he  doublet s t a t e s ,  t h e  2~ s t a t e  with g rea t e s t  o r b i t a l  momentum 
is lowest. When one of  the  e lec t rons  i s  exci ted t o  t h e  (38) s t a t e  o r  h i  her ,  B t he  core of two equivalent p e lec t rons  can take the  terms 3 ~ ,  ID, o r  S, 
but  a s  indicated i n  t a b l e  7.4 the  lowest of  these  is  the  3~ core s t a t e ,  j u s t  
a s  f o r  t he  ground s t a t e  of C I .  The ID core s t a t e  has been iden t i f i ed  i n  
some of the  higher excited leve ls .  

The ground leve ls  f o r  0 I comprise t h e  s e t  o f  terms given i n  t a b l e  7 .4  f o r  
four  equivalent p electrons.  The lowest of these is  the  3~ s t a t e  with the  
grea tes t  mu l t ip l i c i t y  and,of t h e  s i n g l e t  s t a t e s ,  the  ID s t a t e  with g rea t e s t  
o r b i t a l  momentum is lowest. When one o f  t h e  outer  e lec t rons  i s  excited, the  
core can take 4 ~ ,  2 ~ ,  and 2~ configurations with the  lowest of  these the  4 ~ ,  
j u s t  as f o r  N I .  The remaining two core configuratigqs give r i s e  t o  a s e r i e s  of 
i den t i f i ed  leve ls  t h a t  f o r  highly excited s t a t c s  l i e  above the  ionizat ion l i m i t  
f o r  the  4~ core s t a t e  of  0 I .  

F I i n  the ground s t a t e  has only the  one 2~ t e r n  allowed f o r  f i v e  
equivalent p electrons.  When one of these i s  promoted t o  an excired l eve l ,  
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the lowest-lying core configuration is 3 ~ ,  as for T. ground state of 0 I. 
Ne I has a closed shell in the ground state and so has the term IS; both the 
spins and angular momenta are all paired in this case. In excited states, the 
LS coupling approximation becomes rather poor fur Ne, and the LS term sym- 
bols are abandoned in favor of a simple number that designates the coupling of 
the orbital momentum of the excited electron with the total angular momentum 
of the core (called j,l coupling); then the total angular momentum J is 
the coupling between the j , l  value and the spin of the excited electron, 
+1/2. 

7.9 DIATOMIC MOLECULE ELECTRONIC STATES 

At temperatures where electronic states become excited to an appreciable 
extent, polyatomic molecules generally dissociate. However, many diatomic 
molecules are rather strongly bound and excited states of these molecules are 
often observed. The important characteristic so far as the degeneracy of any 
molecular state is concerned is the symmetry, and the symmetry of diatomic 
molecules is cylindrical. An electron subject to a purely cylindrical force 
field would retain constant angular momentum about the axis of symmetry and 
constapt linear momentum along the axis cf symmetry. The diatomic molecule 
has very strong fields at the ends of the molecule, of course, which cause 
large changes in the total angular momentum as the electron reflects froc 
these regions; but because of the overall cylindrical symmetry, the angular 
momentum about the cylindrical axis is preserved. If there were no spin- 
orbital coupling with other electrons, this component of angular momentum 
would be conserved for each individual electron. With coupling, the individ- 
ual electrons may change angular momentum, but the total angular momentum 
about the cylindrical axis is conserved. For a molecule of light atoms, the 
coupling is weak and a situation occurs somewhat similar to LS coupling in 
atoms. Typically, the orbital momenta of the individual electrons add to form 
a total component of orbital momentum which has a relatively constant compo- 
nent along the molecular axis of symmetry and which precesses about this axis 
so that the time average of the component orthogonal to this axis vanishes. 
Similarly, the spin of the individual electrons may add to form a total spin 
that also takes a relatively constant cumponent along the molecular axis of 
symmetry and precesses about this axis. The constant components of electronic 
angular momentum then couple with the angular momentum of the nuclear rota- 
tions to give a total angular momentum, exclusive of the nuclear spin anpular 
momentum. Other coupling schemes sometimes occur in which different compo- 
nents are the relatively constant ones; these are discussed briefly after a 
review of the spectroscopic notation used to describe the various coupling 
schemes. 

The notation chosen ro describe diatomic molecular momentum states is 
patterned after the atomic LS coupled states. Greek letters are used in 
place of English; small Greek letters a, a, 6, . . . signify 0, 1, 2, . . ., 
quanta of angular momenta about the cylindrical axis for the individual elec- 
trons. Capital Greek letters C, II, A, . . . specify the total orbital momen- 
tum of all electrons along the internuclear axis; the spins add up 
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algebraically just as for atoms. A difference between the degeneracies for 
+ i the cylindrical and spherical systems does occur. The C term has no compo- 
3;. 
i ! ,  

nent of angular momentum along the internuclear axis and is a singlet state. 
However, the n, A, and higher angular momentum states all have a doubling of I 
levels corresponding to either clockwise or counterclockwise angular momentum 

I 

I ,  I about the cylindrical axis. The spherically symmetric case had larger degener- 

I 
acies than this because of the additional symmetry involved (recall that S, 
P, D, states of the atoms have degeneracies 1, 3, 5, . . .). Thus, in the 
cylit~drically symmetric case, the Pauli exclusion principle limits the a 
state to tlvo electrons and the TT, 6, etc., states to four electrons each. 

The total spin momentum S can couple with the total orbital momentum A 
* 

_ +  in 2s + 1 different ways as before, and the molecular term is designated 
'k" ' 

2 s + 1 ~  where A represents one of the letters C, II, A, etc. The degeneracy 
of this term is (2s + 1) if A = C, 2(2S + 1) if A takes any of the other 
values. 

Some additional elements of nomenclature are worth mentioning: C states 
are often given a superscript + or -, that is, Z+ or C-,  depending on whether 
the total electronic wave function is even or odd with respect to a plane 
including the axis of symmetry. The + symmetry is always present in states 
with A # 0 ,  so the notation is redundant and is therefore omitted in this 
case. For example, the steady-state symmetrical wave function with A # 0 can 
be represented as the sum 

L .  

and the steady state unsymmetrical wave function as the difference 

whcre 4 is the angle in c).lindrical coordinates. The C states. can be 
compounded of n, 6, etc., electrons and so can have this even and odd sym- 
metry with respect to 4, even though the total angular momentum is zero. 

A subscript g or u (gerade of ungerade) is also used to represent the 
fact that the electronic walre function is even or odd with respect to the 
plane bisecting the nuclear axis. This notation is required only if the 
diatomic molecule is homonuclear, that is, composed of atoms of equal nuclear 
charge; this symmetry is destroyed otherwise. 

English letters X, A, B, C, . . . , a,  3 ,  c ,  . . ., etc. often precede 
the term symbol for molecular states. The capital letters A, B, C, . . . 
designate a sequence of excited states having the same multiplicity, and the 
lower case letters a, b, c ,  . . . designate another sequence with different 
multiplicity. Usually, the lower case letters are a3signed to the lowest 
nultiplicity and the capital letters to the &';gher multiplicity. The ground 
state is designated by X regardless of its multiplicity. (Much of the spec- 
troscopic notation was assigned before the classification with theoretical 
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quantum models was understood and, therefore, occasional exceptions to the 
conventions above occur. Sometimes the sequence of levels is not in correct 
alphabetical order, and the multiplicities may not coordinate properly with 
the capital and lower case notations.) Sometimes a value of i 2 ,  the total 
component of electronic angular momentum along the internuclear axis, is given 
as a subscript to the term symbol. This component is usually an algebraic sum 
of the orbital component A and the spin component C along the axis. How- 
ever, the value of i2 is not always known f20m an analysis of the spectra; 
the molecular spectra are not generally as well ordered in their 
classification as atomic spectra. 

Some examples of molecular energy levels are given in table 7.6 (refs. 11,12). 
Note that the degeneracies are all 2(2S + 1) except the C states, where they 
are (25 + 1). In calculating the partition function for N2, we can normally 

TABLE 7.6.- SOME DIATOMIC MOLECULE ELECTRONIC STATES 

3: 
P' 
6 
t 
8 

I .:' 

g 
p' h - 
C - 
X;! 
B! 

Molecule Term Energy, cm-l Degeneracy, g 

N2 X'P; 0 1 
n31; 50206 3 

B3nS 59626 6 

c3nU 89147 6 

alng 69290 2 

02 x35 0 3 

aidg 7918 2 

6 Pi 
13195 1 

A3P$ 36096 3 

B3C; 49802 3 

J i 
0 ,  

:. 

;?  : 

w :  +; Q .., t, 

4 
-4 
3 +: 4 4 

I ' 

NO 

d 

neglect all but the ground state because the other states are high enough in 
energy that N2 is all dissociated before the electronic states are signifi- 
cantly populated, except at very high pressure of 100 atm or greater. However, 4 

where radiation is concerned, even lightly populated excited states must be 
p 
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x2n,/2 

x2n3/2 
A%+ 

B2Jl 

c2C+ 

D~ C+ 

E ~C+ 

0 

121 

43966 

45930 

52148 

53083 

60628 

2 

2 

2 

4 

2 

2 

2 
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Case (b). When , A = 0 and S # 0, t he  spin S is  not coupled t o  t he  ! i 
in te rnuc lear  ax i s  a t  a l l  and il is  not well defined. Sometimes even i f  _ .  

i i A # 0, S may be so  weakly coupled t h a t  Hund's case (b) appl ies .  In t h i s  case, 1 j A and N form a r e su l t an t  designated by K, which takes values A ,  A + 1,  
A + 2, e t c ;  K represents  t he  t o t a l  angular momentum except f o r  e lec t ron  spin:  I I .. , 

, * 

Then K and S couple t o  give a very weak s p l i t t i n g  c f  leve ls .  The nuclear 
ro ta t iona l  'energy then takes the form 

i f  the  small s p l i t t i n g  of leve ls  is neglected. Most molecules made up o f  
l i g h t  atoms a r e  covered by Hund's cases (a) and (b).  

Case (c ) .  I f  a heavy atom i s  present i n  t he  molecule, A and C a r e  not 
well defined, t h a t  is ,  the  ax i a l  components of L and S a r e  not very constant. 
In t h i s  case, L and S form a r e su l t an t  J t h a t  then precesses about the 
nuclear  ax is  with a constant component Q. The component R couples with N 
t o  form the  t o t a l  J 

which gives t he  same pa t t e rn  of nuclear  ro t a t iona l  leve ls  a s  case (a ) .  ? 
i 
I 8 

Case (d). This case is  approached in  very highly exci ted e lec t ronic  i 
i s t a t e s  where the  outer  e lec t ron  is  i n  a Bohr-like o r b i t .  Then the  energy i s  I determined primarily by the  t o t a l  quantum number; o r b i t a l  angular momentum and i 

spin a r e  very weakly coupled, j u s t  a s  f o r  the  H-atom leve ls  i n  problem 7 . 6 .  ! 

In t h i s  case, the  ro ta t iona l  f i n e  s t ruc tu re  r e s u l t s  almost so l e ly  from the  [ nuclear ro ta t ions .  I 

By convention, tFe nuclear ro ta t ion  quantum number is designated by R f o r  
t h i s  case (ref .12) .  This case is not of ten observed i n  p rac t i ce  because, when 
exc i ta t ion  energies a r e  su f f i c i en t  t o  exc i t e  the  upper Bohr o r b i t s  i n  a 
molecule, the  molecule usual ly d issoc ia tes .  

Case (e) .  In pr inc ip le ,  one can conceive of a case in  which L and S 
a r e  s t rongly coupled, but where t h e  r e su l t an t  is  weakly coupled t o  the nuclear 
ro ta t ions .  This case does not seem t o  be observed ( r e f s .  11, 12, and 13).  

One can appreciate  t h a t  the in t e rp re t a t ion  of molecular spec t ra  with such 
coupling schemes i s  an important a id  in  untangling the f ine  s t ruc tu re  of l i n e s  
observed. Even where t h i s  f i ne  s t ruc tu re  does not exact ly f i t  any one of the  
coupling schemes, it may be s u f f i c i e n t l y  close t o  one of them t o  allow c l a s s i -  
f i ca t ion  of  the  leve ls  observed. In t h i s  way, the  degeneracies of the  varioils 
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levels may be assigned so that the thermodynamicist can proceed to calculate 
partition functions and thermodynamic properties. 

Some ambiguity about the symbol J may occur because it is commonly used 
to represent the molecular rotational quantum number (as in ch. 4), but in 
discussing the coupling schemes, J is reserved to signify the "total1' angular 
momentum quantum number (excluding nuclear spin momentum as discussed above) 
and the molecular rotational quantum numbers are designated by N (or R in 
Hundls cases (d) and (e)). In practice, this ambiguity does not cause much of 
a problem because the electronic angular momentum numbers are usually small 
compared with the molecular rotational quantum numbers of interest. Stable 
electronic structures tend to pair up spins and fill the lowest orbital momen- 
tum states so that the values of Z and A are small, usually 0, 1/2, or 1. 
On the other hand, the most populated molecular rotational states, even at 
ordinary temperature, are those with N the order of 10 or greater. In this 
case, J and N are approximately equal and, to the approximation usually 
required to calculate partition functions, it is sufficient to treat the mol~c- 
ular rotations as though they are independent of coupling effects with 
electronic motion. 

7.10 ELECTRONIC PARTITION FUNCTIONS 

The electronic energy levels and degeneracies of atoms and molecules are 
observed to follow a very irregular pattern so that closed, analytic expres- 
sions for the electronic partition functions are not derivable. Fortunately, 
the energy levels are generally so widely spaced that only the first few terms 
of the series are required at normal temperatures. For example, the elec- 
tronic partition functions given in table 7.7 for a few typical atomic species 
are carried out to energy levels E l k  up to 100,000° K. Electronic levels 

TABLE 7.7 SOME APPROXIMATE ELECTRONIC PARTITION FUNCTIONS FOR 
ATOMS AT TEMPERATURES BELOW 20,000~ K 
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I are typically so widely spread in this region that there is very little i ambiguity about the cutoff level and, for many purposes, these expressions are 

adequate for tem eratures up to about 20,000~ K where higher-order terms are i 
the order of s-! or smaller. Molecules are usually dissociated into atoms 

2 - 
above 10,000~ K, so truncation of the partition functions at E / k =  50,000° K .,d. I is generally adequate for molecules. Table 7.8 gives some approximate molec- I ular partition functions. The contribution of electronic energy to the 

f 
1 :  

TABLE 7.8.- SOME APPROXIMATE ELECTRONIC PARTITION FUNCTIONS FOR ! 

MOLECULES AT TEMPERATURES BELOW 10,000° K 

h 
t thermodynamic functions can readily be computed from these expressions by 

taking the proper derivatives (as outlined in ch. 1): 
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I i  higher-order terms arc all included, the simple summation in 
equation (7.68) becomes divergent for all species at all temperatures. The 
electronic levels all become hydrogen-like when a single excited electron is 
promoted to very high quantum states bccause, far from the nucleus, the inner 
electrons serve merely to screen off the appropriate number of nuclear charges 
and the resultant field is like the spherical field from a point charge. Even 
molecular configurations of nuclei and surrounding inner electrons eventually 
act as a point charge. The hydrogen-like system is an exception in that 
simple mathematical expressions for the electronic degeneracies and energies 
exist: 

where El = -(Z - p12e2/2a, Z is the nuclear charge, and p is the number or' 
inner electrons (i.e., Z - p = 1 for neutral species, 2 for single ionized 
species, etc.). For very large n, the energy levels become so closely spaced 
that the summation of degeneracies involved diverges, as is shown by evalu- 
ating the remainder of the summation above some large quantum number m as an 
integral : 

For more complex atoms and molecules, the first part of the summation 
changes, but at some level. m the higher-~rder terms become hydrogen-like and 
the summation diverges at any temperature Ccq. (7.73)). Fortunately, nature 
does not require that we live in an infinite entropy universe. The upper 
electronic levels are effectively truncated by collision-like perturbations 
due to nearest neighbors in any finite density matter, yielding a finite sum 
that depends on the density of neutral and/or ionized particles surrounding 
the atom. This effect is treated in more detail in chapter 8, which discusses 
several higher-order corrections to the simple, separable partition functions 
considered thus far. 

7.11 CONCLUDING REMARKS 

The contributions of electronic energy states to the partition functions 
and derivative thermodynamic properties usually cannot be expressed analyti- 
cally, even in a first approximation, as could the contributions from rota- 
tional and vibrational modes of molecules. However, only the first few states 
need to be considered even at rather elevated gas temperatures; therefore, the 
problem is simply treated by truncating the partition function sum after the 
first few terms; experimental values are used for the energy levels while the 
degeneracies are deduced from a classification of the spectra in terms of 



multi-electron wave functions that have properties similar to products of 
one-electron wave functions. The necessary data are available for atoms and 
most common diatomic molecules. At temperatures where higher electronic 
states need to be considered, molecules usually dissociate and the atoms all 
become hydrogen-like. Little is known about electronic states of polyatomic 
molecules but, again, these usually dissociate at temperatures where elec- 
tronic energy levels need to be considered, so the only data normally required 
to evaluate thermodynamic properties in this case are the ground state 
degeneracies. 

REFERENCES 

1. Margenau, Henry; and Murphy, George M.: The Mathematics of Physics and 
Chemistry. Second ed., D. Van Nostrand Co., 1956. 

2. Pauling, Linus; and Wilson, E. Bright, Jr.: Introduction to Quantum 
Mechanics. McGraw Hill Book Co., 1935. 

3. Bethe, Hans A,; and Salpeter, Edwin W.: Quantum Mechanics of One- and 
Two-Electron Atoms. Springer-Verlag (Berlin), 1957. 

Eyring, Henry; Walter, J. E.; and Kimball, G. E.: Quantum Chemistry. 
John Wiley & Sons, Inc., 1944. 

Slater, John C ; and Frank, Nathaniel H. : Introduction to Theoretical 
Physics. First ed., McGraw-Hill Book Co., 1933. 

Hnrtree, Douglas R.: The Calculation of Atomic Structures. John Wiley 
6 Sons, Inc., 1957. 

Slater, John C.: Quantum Theory of Atomic Structure. Vols. I and 11. 
McGraw Hill Book Co. , 1960. 

Condon, Edward U.; and Shortley G. H.: Theory of Atomic Spectra. 
Cambridge Univ. Press (Cambridge, Eng.), 1935. 

Herzberg, Gerhard: Aton;ic Spectra and Atomic Structure. Translated with 
the cooperation of the author by J. W. T. Spinks, Prentice-Hall, Inc., 
1937. 

Moore, Charlotte E.: Atomic Energy Levels as Derived from the Analysis 
of Optical Spectra. Washington, U.S. Dept. of Commerce, National Bureau 
of Standards (NBS Circular 467), June 15, 1949. 

Gaydon, A. G. : Dissociation Energies and Spectra of Diatomic Molecules. 
Dover Pub., N. Y., 1950. 



12. Herrberg, ' ~erhard.: Molecular Spectra and Molecular Structure, Vol . I .  
Spectra of ~ i a t ~ r n i c ' ~ o 1 e c u l e s .  Second ed. ,  D .  Van Nostrand Co., 1950. 

13. Johnson, R .  C . :  An Introduction to Molecular Spectra. Methuen (L Co., 
Ltd., London, 1949. 



CHAPTER 8 - PARTITION FUNCTION CORRECTIONS 

8.1 SUMMARY 

The vibration-rotation interaction coupling iri dAatomic molecules is 
analyzed and first-order expressions for the energy levels are deduced. Cor- 
rections to the partition function to account for :his coupling are derived. 

The effects of long-range intermolecular forces due to induced dipcle- 
induced dipole interactions, dipole-induced dipole interactions, charge-dipole 
interactions, and charge-charge interactions are considered. London's quan- 
tized oscillator model (ref. 1) of the induced dipole-induced dipole interac- 
tion is developed. The partition function including effects of such 
dispersion frrces is derived and is shown to lead to tbe virial equation of 
state. For a model combining the hard sphere and long-range attractive type 
potenti8ls, this is found to lead to the van 2er hals equation of state. The 
equation of state ncar the critical point is presented in reduced form 
(thermodynamic variables expressed in units of critical point values). 

Finally, approximate corrections to the electronic partition functions 
are derived to account for perturbations of excited electronic .rites induced 
by neighboring neutral particles, heavy ions, and fast electron collisions. 

8.2 INTRODUCTION 

5 
{. Where good accuracy is required, several corrections to the p~rtition 

$ 
function must be considered. Among the most important are corrections for 
vibration-rotation coupling, for intermolecular forces, and for neighboring 

r atom perturbations that lower the effective ionization potential and truncatc 
? 
I the electronic partition function. These three corrections are now considcrcd. I 

t, 

5.3 VIBRATION-ROTATION COUPLING IN DIATOMIC MOLECULES 

In chapter 4, the rotating diatomic molecule was trcated as a rigid 
rotztor. Now the centrifugal stretching of the internuclear bond which occurs 
as the body rotates is considered. A scmiclassical derivation illustrates the 
physics involved, and is also slrfficiently accurate for most purposes. l'hc 
centrifugal force on the molecule may be expressed in terms of the angular 
momentum L or ur2w, as 



This force is balanced by a restoring force derived from the internuclear 
potential, which for a harmonic potential is the familiar Hooke law, 
pwv2(r - ro), where uv is the vibrational circular frequency and ro is the 
equilibrium internuclear distance for zero angular momentum: 

1 
The energy is just the sum of rotational and potential energies: 

The interatomic distance ' r is now expanded in terms of the small difference 
P -- r0 as 

and, to terms of order L ~ ,  the energy becomes 

The angular momentum L~ can be replaced by its quantum value J(J + l)fi2 to 
give 

Compare this with the spectroscopist's notation, 

E, = BJ(J+ 1) - DJ~(J+ 1j2 + . . . (8.7) 
r 

to obtain expressions for B and D. The expansion can be carried out to .T 

third- and higher-order terms, but available experimental precision does not 
generally warrant fittinj the data to more terms than presented above. 

In addition to the average bond stretching, there is a dependence of B 
on the vibrational quantum level because (ri2) is not the same as (pi1) . 
Let 

ro = re + 6 sin wvt (8.8) i 
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where 6 is the amplitude of vibrational motion involved and re is the - equilibrium interatomic distance when both rotations and vibrations are absent: 

1 
2) = +([I - : s in  out + 5  (&) 2 sin2 ovt + . . ( ( P ~  + 6 s i n  %t) 

- $ 
, 

e 
The vibrational amplitude 6 is related to the vibrational quantum number v f by equating the classical and quantum expressions for vibrational energy: 

t 

Thus for a purely harmonic oscillator the rotational energy constant B 
increases as the vibrational quantum number v increases: 

Such an increase in B with vibrational quantum number is actually observed 
for some of the metal hydrides (LiH, KH, NaH, RbH, and CsH) in their excited 
A ~ Z +  state, where the anharmonic cubic correction term UeXe is negative - that 
is where the potential becomes steeper than quadratic as the molecule is 
stretched beyond the equilibrium posi- 
tion. However, for all other observed I 

diatomic states, the anharmonic A HARMONIC POTENTIAL 

effects produce a shallower than quad- 1/ 
I 

ratic potential as the molecule is I 
stretched beyond the equilibrium posi- 
tion (i.e., u s e  is positive), as 
shown in figure 8.1. In this case the 
average rotational constant corre- 
sponds to a3 internuclear distance 
that roughly bisects the potential 
turning points as suggested by the 
curve for f and thus B decreases as 
vibrational amplitude increases. 
Spectroscopists fit their data 
empirically to the relation 

(8.12) OIMENSICNLESS INTERNUCLEAR DISTANCE, 

x (,.'W2/2~) ' I2 r 
Expressions for ae can be derived 
if the form of the potential is 
known. For the Morse function, for Figure 8.1. - Effects of anharmonicity On 
example, average internuclear distance. 



The fundamental vibrational frequency is also affected by t3e rotations. 
The molecule may be considered to vibrate in an effective potential that is 
the sum of the vibrational potential U,(r) and the rotational energy: 

ROTAT13NAL 
QIJANTUM 
NUMBER \I\ \ - J 

-400 
1 -300 'r- 

o o  
- 2  0 2 4 6 8 
DIMENSIONLESS IN rERNUCLEAR DISTANCE, 

x = ( p w 2 / 2 ~ ) 1 / 2  (r-re) 

Figure 8.2.- Morse potential with 
rotational potential included, 
for N2 Jb = (&o/2~)~ = 2.25~10-~, 
xo = (uw re2/20) = 3.51. 

The effective potential is shown in 
figure 8.2 for a Morse oscillator and 
several rotational quantum numbers. 
One can see that the added ttrotational 
potential" vanishes at large r, but 
grows important near re and actually 
creates a maximum in the effective 
potential. Eventually, at high enough 
rotational quantum numbers, the poten- 
tial minimum disappears and the mole- 
cule dissociates by rotational 
stretching. The rotational contribu- 
tion to the effective potential 
changes the shape about the minimum 
and so alters the vibrational fre- 
quency. When the interaction terms 
are derived for a given potential 
function, the results do not generally 
fit the experiments very well and, in 
practice, the energy levels for 
coupled vibration-rotation are simply 
fit to an expression of the form 

For many purposes, the first-order correction terms given in equation (8.15), 
involving the coefficient D, for centrifugal stretching, the coefficient 
w x for anharmonicity, and the coefficient a, for coupled rotation- e e  $ vibration effects, are sufficient. The next order correction for anharmoni- 
city, [v  + (1/2)13weye, is typically the largest of the neglected terms in 
equation (8.15). 



1 
! 

To derive an expression for the partition function, the energy relative 
to the ground state is needed (see eq. (1.72) in ch. 1). In this connection, 
the older spectroscopic energy expression given below in terms of integer 
quantum numbers is convenient because the ground state level is zero in this 
notation: 

where 

8.4 PARTITION FUNCTION FOR A DIATOMIC MOLECULE WITH 
9.. 
P COUPLED ROTATION-VIBRATION EFFECTS F 
$8, 

I 
The partition function for a vibrating diatomic rotator with energy 

$ levels given in equation (8.16) is the double sum 

-f 
where 

: 
The sum over J is approximated by the integral 

I f The variable of integration z = J(J + 1). The ezp(yoz2) can be expanded in 
the last expression in equation (8.18) because the product yo is so small 

8 that higher-order terms are negligible. Let the variable y=u(l- 6 v ) z ;  then 
the integral becomes, to terms of first order, 
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r-b The partition function is now the sum 

'C 

Expand e m 2  to 1 + m2 and substitute in equation (8.20), to obtain 

The sums involved are 

Ce'Uv = (1 - e - ~ ) - l  

d x v e - U V  = - x(x e-"') = - e-u l -2  

1-j 

5' 
? 

and the partition function finally becomes 

j which may be expressed as the usual product of the separable vibrational and 
I rotational partition functions and a correction term 4 

Q = QvQp (1 + r T )  

where the correction term is 

i "% ; 
The correction becomes appreciable only at temperatures somewhat larger than .c. 

i Kwlk, and the coefficient r can be approximated as Z 
3 
I 

' The coefficient r has essentially the same value whether the factors Be, i 

D,, we, x,, and a,  or the factors B,, Do, w,, x, and a. are used in 
i 

equation (8.26). i ,. 

i 
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In addition to the coupling that exists between vibrational and 
rotational energy, rather strong coupling usually exists between electronic 
energy and both vibrational and rotational energy. However, electronic statss 
are typically widely spaced so that very-few atoms and molecules exist in the 
excited electronic states at normal temperatures. In this case, it is a fair 
approximation to use the vibrational-rotational partition function for the 
ground state species as the partition function for all states. At higher 
temperatures, the coupling is accurately accounted for by treating each elec- 
tronic state as a separate species, with its own characteristic values of B, 
D, w ,  x ,  and a. Values for the higher electronic state are not always known, 
but a partial table of th;se coefficients is given by Herzberg (ref. 2), and 
an updated compilation is available in reference 14. 

8.5 INTERMOLECULAR FORCES 

Long-range attractive forces exist between molecules, even very inert 
molecules, which, at high density, perturb the energy levels and so modify the 
partition function. The existence of attractive intermolecular forces is 
strikingly demonstrated by the fact that liquids exist, and by the Joule- 
Thomson effect in which adiabatically expanding gases are cooled in accordance 

$ with the work done against these forces. In preparation for modeling the ' fi- phenomena of intermolecular attraction, consider first the interaction of 
8 atoms and molecules in the presence of a fixed external electric field s. 
&; 

=.-.u 

3 3 Generally, molecules may be unsymmetrical and possess a permanent dipole 
3. g ,  moment d resulting from the unsymmetrical distribution of the electron F 

$ charge. Usually, the asymmetry is confined to one or two electrons in the 
8: outer shell. It is common practice to treat the dipole as though it were the 
* -  
3, 

result of a single-electron charge with a displacement x from the center of 
* mass, which is the center of residual positive charge. In other words, a 

distance x is defined so that d = ex. 
$ 

? 
The interaction energy between the field E and a permanent dipole 

moment d is 
4 '  + + 

U = - E  . d = -&d cos 8 (8.27) 4 
:: 

where 0 is the angle between the dipole vector and the field. Strictly 4 
!? f 

speaking, the orientations are quantized, of course, but molecules generally 
i! . ,' 

have large enough moments of inertia that a continuous classical variation in 8 '5 
8 is adequate. 3 

i, f 
,I. 

If the orientations were completely random so that all values of 0 were ,J T 
a 

i - 
L, equally probable, the average dipole moment would be zero. However, the 

dipoles take a Boltzmann distribution in which the tendency for the dipoles to 
4 

line up in the minimum energy configuration (6 = 0) is counteracted by the . I .  
.o 3 
-4; 
$; thermal energy of rotation. Where the dipole energy U is very small corn- zf I 

P *. pared to kT, the fraction of molecules with a given orientation 8 is IZ 
% -  approximat el y .;Y 
,3., 

i. 
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P' , 

:.' . The average dipole moment in the direction of the field is then 

i I 
C 
4 .  and the average interaction energy is .I i 

'r t 

L At very low temperatures or in very strong fields, the average dipole 
approaches d as an upper limit, since the dipoles all line up in the field j 
direction, and the interaction energy then approaches ~ d .  I 

Problem 8.1: Show that the normalized Boltzmann distribution for a collection of classical dipoles in a fixed , -  

r electric field c is 

1, and that the average dipole moment is 

Atoms and symmetrical molecules do not have a permanent dipole, but the 
external field distorts the electron distribution and induces a dipole that 
interacts with the field. This effect also occurs in molecules with a perma- 
nent dipole and should be added to the effect considered above. Normally, the 
external field is small compared with the strength of the nuclear field in 
which the electron moves, so the shift in electron density from the nuclear 
center in the direction of the field is small. There is a close analogy 
between this situation nnd the orientation of dipoles except that, in place of 
the thermal energy of rotation that opposes the orientation of the dipoles, 
the kinetic energy of electronic motion opposes any displacement of the elec- 
tronic charge away from the nucleus. A rigorous analysis of the perturbations 
of energy levels produced by an external electric field (the Stark effect) is 
described by Bethe and Salpeter (ref. 3) for one- and two-electron atoms; 
numerical methods are required for more complicated atoms and molecules. For 
present purposes, we are interested mainly in the functional relationships 
between the interaction energy and internuclear distance rather than quantita- 
tively accurate values, and we shall treat the electronic charge as though it 



were a dipole of moment ea oscillating about the nuclear center with a 
kinetic energy equal to the ionization energy I. By analogy with equa- 
tion (8 .29 ) ,  the average dipole in the direction of the field, that is, a€, 
can be expressed approximately as 

In the absence of other information, the order of magnitude of the distance 
a can be taken as the Bohr radius f i2 /pe2 .  Better yet, ea can be estimated 
from the polarizability a, which is related to a measured dielectric constant 
rl (ref. 41 ,  

where N is the number density of the gas. A plot of (rl - 1) versus T - ~  is 
a linear relation with slope 4 n ~ d ~ / 3 k  and the extrapolated intercept at 
ififinite temperature 4nNa. More precise methods are available for measuring 
the permanent dipole moment d by use of a high-frequency electromagnetic 
wave to precess the dipoles about an imposed electric field; the resonance 
frequency of precession is related to the value of d .  Then a may be deter- 
mined from a single measurement of at normal temperature. 

The interaction energy of the polarizable molecule with an imposed field 
is 

With the energies of interaction between molecules and a fixed electric field 
in mind, next consider interactions between the molecules themselves. First, 
the interactions that involve ions are summarized, then the interactions 
involving permanent dipoles and, finally, interactions involving neutral gas 
particles. 

Ion- Ion Interactions 

In this case, the interaction is simply that of the charge of one ion, 
Zle, in the Coulomb potential of the other ion, Z 2 e / r :  

and the interaction energy is proportional to r - l .  There is no orientation 
effect. Polarizability effects also occur, but these are normally much 
smaller than the Coulomb interaction and can h c  disregarded. 



Ion-Dipole Interactions 

At normal temperatures, the interaction energy is the energy of the 
average dipole a in the Coulomb field of the ion: 

1 The interaction energy varies as re4 in this case. At very low temperatures, 
r. a approaches its limiting value of d; then the interaction varies as r'*. 

' P  

. - L - 
LC Ion-Polarization Interaction 

The field of the ion induces a dipole aZe/r2 in a neutral gas particle, 4 
and the interaction energy again varies as F 4 :  i 

1 

Zed z2e2 u =  - - =  - a -  
r2 r4 

but, in this case, independent of temperature since there is no orientation 
effect . 

Dipole-Dipole Interact ion4 ,i 
s 
Z 

The electric field surrounding the dipole dl has the magnitude (ref. 4) j 

where 8 is the angle between d l  and the radius vector between the two 
dipoles. The average dipole of d2 in the direction i-f this field is 
~ d 2 ~ / 3 k ~ ,  and the interaction energy is 

The dipole interactions are normally small compared with kT,  so the average 
value of cos2 8 over all 4n steradian of the solid-angle is approximately 
1/3 and 

Thus, even though dipole-dipole energy decreases as r-3 in strong fields, 
the average decreases much more rapidly i~ ~eak fields, namely, as rw6 
because of thermal randomization of the dipoles. 



Dipole-Polarization Interaction 

The field of the dipole, equation (8.37), induces the dipole ac in the 
direction of the field and leads to an interaction energy again proportional 1 
to r-6: 

I 

which is relatively independent of temperature under normal conditions. 

v 

Polarization-Polarization Interaction 

The interaction between two neutral particles is the most common 
collision interaction in gases at normal temperatures. In this case, the 
outer electrans moving relative to the center of charge behave as oscillating 
dipoles and induce the similarly oscillating dipoles of neighboring gas parti- 
cles to move in the same phase. Thus two interacting particles behave as a 
pair of coupled oscillators. 

The analogy between interacting neutral molecules and a pair of coupled 
oscillators was developed by London (ref. 1) and, although the treatment of 
electronic motion as a harmonic oscillator yields only fair quantitative 
accuracy, the model is very helpful heuris- 
tically. Consider first the motion along a 
line between the centers of molecules 
(fig. 8.3). Let r be the distance between 
centers and x 1  and 2 2 ,  the displacements of 
negative charge from the nuclei at any 
instant of time. The interaction potential I.-------- r 
is thus 

Finure 8.3.- Coordinate svsten - 
for colinear pair of one- 
dimensional oscillating 
dipoles. 

(8.41a) 

Then the Schroedinger equation for the system of two equivalent oscillators is 

where hw/2 is the energy of the unperturbed oscillators in their ground 
; state, approximately the ionization energy I. Separation of variables is 

effected by the transformation 



The separable wave function JI = J11(a1)J12(a2) is a solution to equa- 
tion (8.42b). The ground state energies of these uncoupled oscillators are 

I 

i *, . .. - --.,.. -. . . . . -- - ' 3"" 

The total energy of the system is 

: . .. . .,' 

. . 

a 

The first term in equation (8.44~) is just the energy of the two unperturbed 1 
oscillators, so the interaction energy is the second term i 

i 

R g p ~ ~ ~ ~ ~ ~ ~ J ~  t*wmh!, ~ A A E  IS OF POOa i I 4 5 
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1 
I 

- 82 x2 = -- 
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i 
i 

2 2 

21x2 = - a2 ! 

One might relate the total oscillator energy fiu/2 and (1/2)uo2a2 to the ioni- 
zation energy I or to the polarizability a given in equation (8.31) to 3 
demonstrate the furlctional relationships between' these quantities i f 

i t 
,; t 

j 2 
* 

! 
and the Schroedinger equation then becomes 

i 

However, the harmonic oscillator analogy should not be pushed too far quanti- i j 
tatively; the numerical coefficients given can only be expected to give order- 

, 
I 

of-magnitude accuracy. The principle point is that the intera~tion energy 1 

between neutral particles is predicted to vary as r6. $ $ 

t 



Problem 8.2: Show that the interaction potentidl for dipole oscillators that vibrate n o m l  to tho line 
hetwecn centers is approximately 

and that the interaction energy for coupled oscillators in such modes of vibration is 

The total interaction energy for three independent modes of oscillation, one parallel and two normal to the radius 
vector between particles, would thus be 3/2 larger than given in equatian (8.45a). 

Other types of molecular forces occur, of course. Some molecules, such 
as Con, have no dipole moment but possess strong quadrupoles. However, dipole- 
quadmpol e and quadrupole-quadrupole interact ions decrease as r-* and r-10, 
respectively, and normally have a much shorter range than the interactions 
considered above. Usually, these are ignored because the very strong repul- 
sive forces begin to take over at these short ranges anyway. Qualitatively, 
the repulsive forces are associated with the potential of charge distributions. 
For example, the potential of a charge distribution $2(r1) at point r may 
be expressed as 

This potential is weighted so heavily at the point r that, to a first 
approximation, the potential is proportional to the charge density at that 
point: 

Since the wave functions all decrease exponentially, one expects the inter- 
action potential to decrease c:xponentially as indicated in equation (8.4%). 
Unfortunately, exponential forms are sometimes difficult to treat in analytic 
problems, and a simple inverse-power relation is often easier to handle: 

' .r I: 
If the exponent n is taken to be 12, the behavior is something like an C: ' *, .$ 
exponential repulsion over a reasonaljle range of energy. A still simpler *,a 

i approximation often useful is to let the repul~ive potential be a discontinu- 
ous jump to +m at some distance r, where the repulsive potential balances I 
the attractive potentials considered above. A combined hard sphere and 

f 

i 
attractive potential of the form C! :: 
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i is found to be reasonably realistic for some calculations where the 
coefficient n is taken to be 6 for neutral particle interactions ~ n d  4 f , * r  

I ion-neutral particle interactions (as discussed above). The coefficient 'lo 

is a constant or is proportional to (k~)'~, eepending on whether the molecules 
i'. 1' have zero or finite permanent dipole moment. 

8.6 PARTITION FUNCTION WIT11 DISPERSION FORCES 

. i The long-range attractive forces discussed in section 8.5 are known as 
dispersion forces. We now consider the general form of the partition function 
when gas molecules move in the presence of such forces. 

1 
I 

! The total !iamiltonian for it system of N identical particles with mass 
I m is 

wkre the 3N coordinates qi are conjugate to the lomenta coordinates P , ~ .  
In contrast to earlier chapters, N does not necessarily mean the 4vagadro 

' ---. i number here. The total partition function for the entire system of N 
s particles, expressed in terms of the classical phase integral, is 

The factor N! in the denominatar is required to account for the number of 
ways identical particles can be interchanged without altering the system. The 
remaining integral over the coordinates is called the configuration integral, 
I. Note that if the'interaction energy U ,is everywhere zcro, the configura- 
tion integral becomes vN, where V is thc total volume of the system. In 
this case, 

where Q is the usual single-p;jrt i clc 1);rt.t it ion function obtainct' previously 
for very dilute gases, tt;;rt is, whcrc gas particles arc so far from 411 
neighbors on the averag~. th:~t the interact ion potcnti;lls can be neglected. If 
U ( q i )  is nonvanishing over ;I t l ( . ry  sm:ill pcrccntagc of thc space, then the con- 
figuration integral is c.:p:-ctcd to 1)c aln~ost thc 2 power of volume, 
approxim.,tely v ! J ( ~  - n ) h  o r  1 ' , '~ (1  - .'It- + . . . I ,  whcre c is ii small quantity 
and E < 0 if LI < 0. Noic tililt tllc irltcrnal dc.grccs bf  freedom of the 



molecules a r e  a l l  t r ea t ed  a s  independent here; t h e  q terms i n  t h e  
configuration in t eg ra l  a r e  ex te rna l  o r  pos i t ion  coordinates o f  t h e  molecules 
only. 

Problr 8 .3 :  Show that i f  the system contains r mixture of gases with N1 identical particles of mass ml. 
I 2  Idmtlcrl prnlclcr of moss ma, etc . ,  the partition function for the total system of N ( N I  Nz . . . )  
prt ic les  b e c o r n  

and that in the limit as U vanlshes everywhere: 

Assunre now t h a t  t he  po t en t i a l  is t h e  sum o f  a l l  p a i r  po t en t i a l s  

This is  not s t r i c t l y  t rue ,  but it i s  a useful  approximation. 'i'he configura- 
t i on  i n t eg ra l  I m y  then be expressed a s  

Consider f i r s t  the  i n t eg ra l  over t h e  coordinates o f  t h e  f i r s t  molecule, X I ,  
y l ,  and X I ,  which i n t e r a c t s  with 8 -  1 o the r  molecules: 

I f  U(r i l ) /kT is  always very small compared with un i ty ,  we can neglect a l l  
but the  f i r s t - o r d e r  terms and express t he  i n t eg ra l  i n  equation (8 .54)  as  

tilere 6 is defined, using e i t h e r  Cartesian o r  po la r  ccordinates ,  as  



-3 
Follow the same procedure for the second molecule, noting that the interaction 
with the first molecule has already been included so that the interactions 
with N -  2 other molecules remain to be included, then for the third molecule - 

5 . . r -  

N -  3 interactions remain, and so on. The configuration integral thus becomes i 3 

The logarithm of the configuration integral is approximately 

and the logarithm of the atal partition function of the system is 

The thermodynamic p.operties of gases are usually expressed in terms of 
the single-particle partition function Q, which is :elated to QN through 
equation (8.51) by 

The first term is just the free-particle translational partition function and 
the second term is the correction for dispersion forces, which vanishes as the 
gas becomes infinitely dilute, (NlV) + 0. 

The pressure of a gas with di:;persion forces is thus 
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Compare t h i s  with the  v i r i a l  equation of  s t a t e :  
i. --- ... -.. - .  

+ m + a + .  , 
V V v2 .) (8.61b) 1 

. d~ 

. / 
An expression f o r  t he  f i r s t  v i r i a l  coef f ic ien t  i n  terms of t he  dispersion 

i 
po ten t i a l  i s  thus I 

1 :  

- -2nN tm [e-U(p)'kT - d r  B(T) = - - - 2 (8.62) 
E I 

A t  very low temperatures, t he  region where the  in te rac t ion  poten t ia l  i s  
negative, U(r) < 0, contr ibutes  most t o  the  in t eg ra l  8  and the correct ion 
coef f ic ien t  B(T)/V i s  then negative. A t  very high temperatures, the  inner  
core region where the  in te rac t ion  poten t ia l  i s  l a rge  and pos i t ive  contr ibutes  
most t o  t he  in tegra l  8 and B(T)/V then becomes pos i t ive .  The temperature 
where the  coef f ic ien t  B(T) vanishes i s  known a s  the  Boyle temperature; 
Boyle's law of gases i s  va l id  over a  wide range of pressures near t h i s  temper- 
a ture .  Typical Boyle ternperaturtss range from 18' K f o r  He and 100' K f o r  H2 
t o  325' K f o r  N2, 422' K f o r  02, &?d 426' K f o r  A r .  For teinperatures much 
l a rge r  than the  Boyle temperatclre, t l i e  i n t eg ra l  (-8) approaches a  c -~ns t an t  
t h a t  represents  the  volu~ne where the  poten t ia l  i s  e s sen t i a l l y  impenetrable. 
For most molecules, t h i s  volume is  the  order  of 6 x l 0 - ~ ~  cm3, corresponding t o  
t he  range of ground s t a t e  wave functions tha t  have a  r ad i a l  extent of about 
1 .3~10-8  cm. Thus a  l imit ing upper value of B(T) i s  about 20 cm3. Divided by 
the  molar volume of t he  gas considered, t h i s  value gives the magnitude of t he  
correct ion a t  temperatures well above the  Boyle temperature; f o r  example, a t  
normal dens i t ies ,  V = 22,400 cm3 and ( B / V )  = 10-3. The negative correct ions 
below the  Boyle temperature depend on the  long-range a t t r a c t i v e  poten t ia l  
function and a r e  not so simply characterized a s  the l i m i t  above, but they a r e  
t yp ica l ly  the  same order  of magnitude. For example, a t  standard temperature 
and pressure,  ( - B / V )  is  about f o r  02 and N2.  A t  lower dens i t i e s ,  the  
correct ions a r e  proportionately s a a l l e r .  

8.7 FREE E"ERGY AND FUGACITY 

The chemist describes deviations from idea l  gas behavior i n  terms of t he  
fugaci ty,  f ( r e f s .  5  and 6) .  This quant i ty  may be defined in  terms of  the  
Gibbs f r ee  energy G a s  

where Go and fO a re  th  f r e e  energy and fugacity a t  some standard s t a t e .  
Normally, the standard f r e e  energy i s  taken t o  be a t  such low pressure t ha t  
Go i s  the  ideal  gas value and the standard fugacity fO i s  the  pressure.  



Neglect the coupling between internal and external degrees of freedom so 
that the partition function may be expressed as the product of translational 
and internal energy partition functions: 

Then, i f  one allows for dispersion force corrections, the Gibbs free energy 
becomes 

The standard state at very low pressure where N B / V = O  and PV-RT becomes 

so the difference in free energy is 

If equation (8.65) is compared with (8.63), the fugacity ratio may be 
expressed as 

Since the standard fugacity fO = po = RTIVO, 

The ratio NB/V  is very small compared with unity and the fugacity is 
approximate 1 y 



8.8 THE VAN DER WAALS GAS 

The var der Waals gas is an approximation obtained when the potential 
function is taken to be a combination of hard sphere and long-range attractive 
potentials: 

The integral 0 is then - 

The first virial coefficient B(T) may be expressed as 8 

a = b - -  (8.69) I 
RT i ; .  

i The quantity b is one-half the volume preempted by the hard sphere part of 
the potential. The quantity a is positive when U(r) is negative, and thus 
is a measure of the magnitude of the attractive potential. R e  equation of j I '$ 

state may now be expressed as 

which is the same as the empirical van der Waal equation: 



- A] 
- R T [ ; + ~ ~  VRT 

except for a factor [l - (b/V) ] in the denominator of the second term, which 
can be replaced by unity for reasonably dilute gases. The van der Waal equa- 
tion may be expected to remain valid so long as virial coefficients beyond the 
first can be safely ignored. 

For induced-dipole, induced-dipole type interactions between neutral 
particles, an expression for a may be developed frorr the interaction poten- 
tial in equation (8.46): 

8.9 EQUATION OF STATE NEAR THE CRITICAL POINT 

Most of the discussions here have had the purely gas phase in mind, but 
at very low temperatures and high pressures, mixtures of liquid and vapor 
phase occur and the ideal gas relations must be severely modified. The crit- 
ical temperature T, ic defined as that temperature above which no liquid 
phase can be formed at any pressure. The critical pressure p ,  is the 
pressure at which the gas phase just maintains equilibrium with the liquid at 
the critical temperature, and the critical volume V is the volume of a 
fixed mass of gas at p, and T,. The equation of state near the critical 
point can be approximated reasonably well with the van der Waal equation, but 
the value of R need not be the gas constant. A reduced form of the van der 
Waal equation is the most satisfactory approximation, obtained by dividing 
equation (8.70a) by the product pelfc: 

r 

(p* + $) (V* - b*) = R*T* 

where p*, V*, and T* are the pressure, volume, and temperature, respectively, 
in units of the critical values p,, V,, and T,. The equation must be satis- 
fied at the cr. ical point (p* = V* = T* = 1) and have an inflection at that 
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point, which requires that 

Note that R* would be unity for an ideal gas. The reduced form of the 
van der Waal equation then becomes 

This equation is found to reproduce reasonably well the behavior of most com- 
pounds in the liquid phase and in the vapor phase near the critical point. 
However, in the mixed liquid-vapor phase, the phase fractions change in such a 
way that the pressure remains constant (the vapor pressure at the given temper- 
ature) over a wide range of specific volume, whereas p* is a cubic function 
of V* over this range according to equation (8.74). The domain of mixed 
phase may be estimated from an empirical relation for vapor pressure found by 
van der Waals (ref. 5) ; 

where C is a characteristic constant 
of the vapor (e.g., about 5.52 for O2 
and 5.62 for Np) . The boundaries of 
the mixed-phase region on a p*V* plot 
occur where the vapor pressure in 
equation (8.75) intersects the iso- 
therms given in equation (8.74) . Fig- 
ure 8.4 shows the isotherms for Np with 
C = 5.62. An approximate solution to 
equation (8.74) at the vapor boundary 
where V* >> 1, which also sati~fies 
conditions at the critic~l point, is 

3 - 
- EQ. (8.74) 
---- VAPOR-VAPOR LIQUID INTERFACE, 

SIMULTANEOUS SOLUTION OF 
EQ.10.74) AND €0. (875) 

EXTRAPOLATION OF EQ. (8.74) INTO 
TWO PHASE VAPOR LIQUID REGION 

- 
- 1 0 1 2 3 4  

log V/V, 

The empirical constant C can be Figure 8.4.- Equation of state near 
related to the heat of vaporization AH critical point for gas with vapor 
through the Clausius-Clapeyron equation pressure given by 

pulpc = eq[5.62(1 - T , l T ) I .  



I 

. 1 (refs. 5 and 6) 
-.,. 

i +v AH - = -  
dT TAG' (8.77a) 

I 

In reduced form, this equation becqmes 

i 
t Near the liquid boundary, the liquid volume is approximately the critical 
, '" volume, and the change in volume P is, from equation (8.76), approximately 

t 

Then, from equations (8.75) and (8.77b) , 

L., Equation (8.79) predicts a vanishing value for AH at the critical point and 
a constant value (8C/3)(pcVc) far removed from the critical point. The constant 
C may be adjusted to agree with the observed AH at the boiling point 

(Pv = 1 atm), and the results will then be reasonably accurate elsewhere. 

At first glance, it might appear that the equation of state near the 
critical point derived above does not depend in any way on the partition func- 
tion. However, it is indeed related to the partition function; recall that 4 

equation (8.74) is derived from the van der Waal equation, and the latter can 
be derived directly from the partition function, with suitable approximations 
for the configuration integral. 

Prcblem 8.4: Show that the values a* = 3, b* = 1/3, and RTc/PcVc = (1 + a * ) ( l  - b*) in the reduced form of , , 

van der Waal's equation 

). 

satlsfy conditions at the critical point and create an inflection point there. 

8.10 CORRECTIONS TO ELECTRONIC PARTITION FUNCTIONS 

As mentioned in chapter 7, the electronic energy states near the 
ionizaticn limit become hydrogen-like for all atoms and molecules, and the 
partition function would become infinite (eq. (7.73)) if these levels were not 
effectively truncated. The truncation occurs because neighboring gas par- 
ticles perturb the energy levels and, in effect, lower the ionization energy 



needed f o r  t h e  exc i t ed  e l e c t r o n  t o  escape from i t s  paren t  nucleus.  Although I , 
t h e o r i e s  o f  t h e  reduced ion'zation p o t e n t i a l  a r e  f a r  from p r e c i s e ,  t h e  a c t u a l  I 
v a lue  o f  t h e  p a r t i t i o n  funct ion i s  r a t h e r  i n s e n s i t i v e  t o  t h e  exac t  t r u n c a t i o n  ! 
p o i n t  except a t  very high temperature,  so  t h e  approximate t h e o r i e s  a r e  ! 

adequate f o r  many condi t ions  o f  i n t e r e s t .  
! 

' I The average value  o f  r i s  approximately . . 
5 

Consider f i r s t  a  n e u t r a l  gas o f  N randomly d i s t r i b u t e d  p a r t i c l e s  i n  a  i 

volume N l p ,  where p is  t h e  number dens i ty .  The p r o b a b i l i t y  t h a t  none of 

and t h e  maximum quantum number o f  t h e  hydrogen-like o r b i t  t h a t  f a l l s  wi th in  
t h i s  r ad ius  is  

'-1. 

where a. is t h e  usual  Bohr o r b i t .  

t h e  N p a r t i c l e s  f a l l s  wi th in  a  r a d i u s  r about a  t e s t  molecule i s  

To a  f i r s t  approximation, t h e  p a r t i t i o n  func t ion  may simply be terminated 
a t  nm, r e s u l t i n g  i n  a  f i n i t e  l i m i t  weakly dependent on number dens i ty .  A 
more r igorous  approach would be t o  so lve  t h e  Schrocdinger equation f o r  t h e  
per turbed energy l e v e l s , b u t  t h i s  i s  r a r e l y  worth bother ing with a t  t h e  usual  
temperatures where n e u t r a l  gases e x i s t  s i n c e  t h e  p a r t i t i o n  funct ion is insen- 
s i t i v e  t o  t h e  exact  c u t  o f f  choser a t  t h e s e  temperatures.  A t  h igher  tempera- 
t u r e s ,  t h e  gas becomes ionized and t h e  much s t r o n g e r  pe r tu rba t ions  c r e a t e d  by 
t h e  p o s i t i v e  ions  and e l e c t r o n  c o l l i s i o n s  become dominant. 

Several  t h e o r i e s  f o r  t h e  e f f e c t  o f  ion per tu rba t ions  on weakly bound 
e l e c t r o n i c  s t a t e s  have been developed, but  p r e c i s e  experimental v a l i d a t i o n  o f  
any o f  them has  been lacking.  Nevertheless,  t h e  var ious  t h e o r i e s  do give  some- 
what s i m i l a r  r e s u l t s  and i l l u s t r a t e  some of  t h e  mechanisms by which such per-  
t u r b a t i o n s  rnust t r u n c a t e  t h e  p a r t i t i o n  func t ion .  Perhaps t h e  s imples t  theory 
and t h e r e f o r e  a  h e u r i s t i c a l l y  a t t r a c t i v e  one i s  t h a t  of unsold ( r e f .  7 ) .  This 
theory assumes t h a t  t h e  perturbatio:; i s  furnished s o l e l y  by t h e  n e a r e s t  
neighbor. The escape energy o f  a  bound e l e c t r o n  is  reduced by t h e  per turba-  
t i o n  o f  a  nearby ion ( f i g .  8 .5) .  The Coulomb p o t e n t i a l  of t h e  pe r tu rb ing  ion ,  
with charge Z l e ,  i s  added t o  t h e  Coulomb p o t e n t i a l  of t h e  c e n t r a l  charge Ze. 
The d i s t a n c e  between t h e  ion and the  per turbed p a r t i c l e  i s  r, t h e  d i s t a n c e  
from t h e  c e n t e r  of t h e  p a r t i c l e  t o  t h e  maximlim p o t e n t i a l  i s  def ined a s  b .  Z 
i s  t h e  e f f e c t i v e  screened change f o r  t h e  perturbed p a r t i c l e ,  approximately 
u n i t y  f o r  a n e u t r a l  atom, two f o r  a s i n g l e  ionized atom, e t c .  The p o t e n t i a l  
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energy at this maximum is thus 

ze2 zle2 
V r n = - ~ - =  (8.83) 

The effective potential change of the 
excited electron at the series limit 
is obtained by subtracting the average 
potential change due to the perturbing 
ion, that is, -zle2/r, from the maxi- 
mum in the potential -V,, given above. 
This change is related to the maximum 
quantum number n, for the bound 

AE . -vm- - electron by 
I I 

e 2 ~ 2  z 1 u=-=e2(Z+--%) 
Figure 8.5.- Potential for electron 2aonm2 b r - b  r 

bound to screened charge +Ze when 
perturbed by ion charge +Zle at 
the distance r. 

r - b  

The ratio (r-b)/b can be eliminated with the relation that the electric 
fields associated with the two Coulomb potentials are equal at the potential 
maximum 

Thus the maximum quantum number is given by 

If the ionized gas contains only one type of perturber, the average dis- 
tance to a perturbing ion is given by a relation such as equation (8.81). 
Thus 

where p, is the electron number density. 

If several types of perturbers are present, the probability that no ion 
of type i, having a number density p i ,  lies within the range of the quantum 
state n, can be expressed as 
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!p 
$" : 

P ; = q ( - $ p i ~ ; 3 ) m w ~ ~ ( ~ ~ ( l + 2 m ~ ]  (8.88) 

Then t h e  probiibil i ty t h a t  none of t h e  per turbers  of any typ t  .A11 wjthin t he  
range of  t h e  quantum s t a t e  n, is  t h e  product 

In p rac t i ce ,  Zt and Z are usua l ly  about equal so t h e  function (1 + 2 4 q 7 z ) 3  
i s  expanded about Zi/Z = 1 t o  give 

F-, The average value o f  t h e  maximum quantum number n, is  approximately given 
-4 when t h e  exponent is  -1, thus 

and t h e  average reduction i n  ion iza t ion  po t en t i a l  is  approximately 

The maximum quantum number i n  a  high-density ionized gas is  even l e s s  
than above because of a  Debye shielding e f f e c t  t h a t  t runca tes  t he  nuclear  
po t en t i a l  even sooner than a  perturbing neighbor ion. A temperature e f f e c t  
then occurs because of  changes i n  t he  d i s t r i b u t i o n  of  charged p a r t i c l e s  i n  t h e  
gas with changes i n  temperature. 

Consider t h e  charge sh ie ld ing  about a  t e s t  p a r t i c l e  with charge Ze. The 
e l e c t r i c  po t en t i a l  per  u n i t  charge i s  defined a s  and the  charged p a r t i c l e s  
a r e  assumed t o  be d i s t r i bu t ed  i n  an equilibrium Boltzmann d i s t r i b u t i o n  

The e l e c t r i c  po ten t ia l  i s  t he  so lu t ion  t o  Poisson's equation 



$4  = -4np = -471 (r)  - ep, ee4lkT +  ex^^^^ e -Zieg/kT I (8.95) 
i 

where b(r) is the delta function, 6(0)  = 1, 6 ( r  # 0)  = 0 .  At large r ,  the 
exponentials are expanded because e+ is then small compared with kT: 

If the ionized gas is electrically neutral, 

Then equation (8.96) becomes, with radial symmetry included, 

A solution to equation (8.98) with the correct asymptotic limits at both large 
r and small r is 

where the characteristic Debye length is given by 

The effect of the Debye potential is to perturb the energy levels very little 
up to the point where r < D, but to truncate levels where r >> D. To a 
first approximation, the quantum levels are truncated where r = D or 

A more rigorous deviation given by Margenau and Lewis (ref. 8) is as follows. 

The Schroedinger equation with the Debye potential is, in energy units of 
e2/2ao and distance units of a,, 
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A small perturbation method will not apply because the levels near the series 
limit have energy the same order as the perturbations involved. Therefore, a 

- .  variational method is used with hydrogen-like wave functions with an effective 
nuclear charge a as the variational parameter. The Laplacian operator act- 

( 

ing on the hydrogen-like function +n yields ..a 

I. 
?; 
fi., 
:I where Eno = -a2/n2 and n is the quantum number. Substitute equation (8.103) 
t4 

into equation (8.102), multiply by +,*, and integrate over all space, to 
- .  - e' obtain for the energy 

Since the wave function is of interest principally where r < D, the factors 

e '-P/D) are expanded in a power series to give 

h . ... Thus the energy given by equation (8.104) is 

22 En = - -+  n ~ ( 3  - Z) ($) + 2 $ F ( ( 6 ) i )  i +  l)! 
z=o 

Now the value of r'l is just z/n2, and the other averages can all be evalu- 
ated in terms of the parameter B = n 2 / z ~ .  The energy of state n can be 
expressed as 

where S(B) is the series 

The first few moments of r are 



and for 8 states ( Z  = O), the function S(B) becomes 

The variational constraint that the best wave function gives the mininnrm 
energy leads to 

For the last bound quantum state, 

Equations (8.11 1) and (8.112) give two equations in two unknowns Zm and Bm 
to be solved. To terms of first order, S = 1 ,  St = 0, zm = 2, and & = 1/2. 
Then nm2 = ZD12ao, half the vhlue given in equation (8.101). More precisely, 
2 can be eliminated from equations (8.111) and (8.112) to give 

For the s states where S(B1 is given by equation (8.108a). equations (8.111) 
and (8.112) are round to havc rnots  where 0, 1.1 and 2, = 0.832, in which 
case 

nearly the same result as cquat ion (8.101). 

The reduction in the ionization potential given by Debye shielding is 
just 



where the product ( h z , )  is unity in the simple apprcximation given by equa- 
tion (8.101) and is about 0.91 for 8 szates as gi~en by the Inore rigorous 
solution, equation (8.114). 

The akave estimates for the depression of the ionization potential and 
truncation of the electronic partition function are appropriate when the per- 
turbing ions are slcw moving compared with the motion of the bound electrons 
about their central nuclei. However, free electrons in a plasma often move 
with velocities comparable to those 04 the bound electrons; :hen an j4.l?act 
approximation is used to analyze the effect of electron collisions. 

According to the uncertainty principle, the energy spread associated with 
the finite lifetime of a quantum statb 8-I is h e ,  and this is again related 
to the maximum quantum number,n,,where the spacing between excited hydrogen- 
like levels equals the collision broaclcning, and the excited electron can 
escape to a continuum: 

In the present case, the lifetime is established by the frequency of electron 
collisions strong enough to change the quantum state 

where p, is the electron number density, S is the effective collision cross 
section, and F is the mean collision velocity (8k~lap)~'~. The reduced mass 
p is essentially the electron mass in thc present case since the atomic 
particles are so much heavier than the electron. 

The cross section is estimated by calculating the total phase shift pro- 
duced in a single encounter by the first-order Stark effect, 2nd when this 
phase shift exceeds the order of 1 radian, this is deemed sufficient to 
disrupt the quantum state. Most of the ELECTRON 

collisions involved are distant ones and, ir VELOCITY v 
this case, to a first approximation, the 
free electron follows a straighc-line trajec- 
tory with miss distance b (fig. 8.6). The MISS DISTANCE rs , . (b7 + VZ .' 
perturbation of hydrogen-like orbits by the 
Stark effect has been worked out in detail 
by Bethe and Salpeter (ref. 3) and, in the 
field of the electron e2/r2, the inter- 

k 
PLRTURBED 

action energy is ATOM 

Figure 8.6. - LIl~tclnt clccti~~)n 
3 aoe2 . aoe2 

J Z +  - 2 col1 ision tr*ljectory xith 
AE = f 7-57- .! (8.116b) 

2zr2 respect to perturbed atom. 



where j is an i n t e g e r  t h a t  t a k e s  a l l  va lues  from 0 t o  n(n - 1 ) .  The 
average va lue  o f  j f o r  a  given quantum s t a t e  n is about n2/3. The t o t a l  
phase s h i f t  produced over  t h e  dura t ion  o f  t h e  encounter i s  then 

The c ross  s e c t i o n  i s  evaluated f o r  t h e  r a d i u s  bo where is  
approximately un i ty :  

and t h e  a p p r o p r i a ? ~  c o l l i s i o n  frequency i s  

Let n = nm i n  equation (S. 1  . ir~d s o l :  . s imul taneously  wi th  equat ion (8.116a) 
t o  ob ta in  

In any given ionized gas ,  t h e  c u t o f f  quantum number i s  t h e  lowest o f  
those  given f o r  s t a t i c  ion p e r t u r b a t i o n s ,  equat ion (8 .92) ;  f o r  Debye s h i  ld ing 
e f f e c t s ,  equation (8 . '01) ;  and f o r  e l e c t r o n  'mpact per turbat ion, ,  equa- 
t i o n  (8.12. j . A t  m,derate tempcratures,  kT about one-half  t o  one eV, t h e  
e l e c t r o n  impact broadening genera l ly  produces t h e  lowest cu to f f  a t  low densi -  
t i e s ,  though t h e  i o n i z a t i o n  p o t e n t i a l  decrease  produced by p o s i t i v e  ion per-  
t u r b a t i o n  e f f e c t s  g ives  about the  same va lue .  As d e n s i t y  is  increased,  t h e  
De!.ye sh ie ld ing  e f f e c t  wliich v a r i e s  much more s t r o n g l y  with d e n s i t y  (as  p - l I 4 )  

b e c o ~ n r  t h e  dominant one a t  these  temperatures.  However, a s  temperature \ 
i nc reases  f u r t h e r ,  t h e  Debye c u t o f f  which a l s o  v a r i e s  a s  TI / '+ ,  becomes l a r g e  
enough t h a t  it no longer in f luences  t h e  phenomenon. A t  very high temperatures,  
kT g r e a t e r  than one eV o r  more, t h e  e l e c t r o n  impact c u t o f f ,  which depends f' 

very weakly on temperature,  may become l a r g e  enough t h a t  t h e  ion p e r t u r b a t i o n  
?, 

e f f e c t s  provide t h e  lowest value o f  nm. 

:.lsny a d d i t i o n a i  t h e o r i e s  have been proposed. Ecker and Weizel ( r e f .  9) 
t r e a t  an ionized gas a s  a  modified Debye-Hickel e l e c t r o l y t e .  Grieln (re?.  10) 
uses  t h e  Debye p o t e n t i a l  t o  determine a  minimized f r e e  energy. A good review 
o f  t h e s e  theo:;es and o t h e r s  i s  give11 by Urawin and Felenbok ( r e f .  11) .  Also. 
a,., theory of  s p e c t r a l  l i n e  broadening can be  app l i ed  t o  t h e  reduc t ion  o f  t h e  
i o n i z n t i c n  p o t e n t i a l  a s  wel l .  A l l e r  [ r e f .  12) r ~ ~ r i e w s  some o f  t h e  l i n e -  1 

broadening t h e o r i e s  a s  does Margenau and Lewis ( r e f .  8 ) .  Simple approxima- 
t i o n ;  f o r  e l e c t r o n  impact and ion S ta rk  broadening a r e  given by Hansen 
( r e f .  13) .  These t h e o r i e s  even with a t tempts  a t  considerably  more r i g o r ,  a l l  



give somewhat similar results. Thus, the qualitative descriptions of 
ionization lowering are probably adequate, although one should certainly 
expect the quantitative results to be somewhat approximate. 

8.1 1 CONCLUDING REMARKS 

Effects of vibration-rotation coupling in diatomic molecules, dispersion 
forces in gases, and electronic state perturbations in gases have been treated 
in a very approximate manner. However, this is often sufficient to correct 
the partition functions since, for gases that are not too dense, the uncoupled 
mode approximation gives partition functions that are aiready reasonably 
accurate. The general methods presented here for correcting the partition 
function can be extended to other cases of intermode coupling, and also permit 
one to follow the development of more precise models where required. 
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a" CHAPTER 9 - EQUILIBRIUM PROPERTIES OF CHEMICALLY REACTING GASES 
I 

I F 
.'1 

7 
5 

9.1 SUMMARY 

ii 
The equilibrium energy, enthalpy , entropy, specific heats at constant 

. . 
.- vol~une and constant pressure, and the equation of state of the gas are all 

derived for chemically reacting gas mixtures in terms of the compressibility, 
the mol fractions, the thermodynamic properties of the pure gas components, 
and the change in zero point energy due to reaction. Results w e  illustrated 
for a simple diatomic dissociation reaction and nitrogen is used as an example. 
Next, a gas mixture resultin9 from combined diatomic dissociation and atomic 
ionization reactions is treated and, again, nitrogen is used as an example. A 
short discussion is given of the additional complexities involved when precise 
solutions for high-temperature air are desired, including effects caused by NO 
produced in shuffle reactions and by other trace species formed from C02, H20, 
and Ar found in normal air. 

All previous chapters have led us to the point where we can accurately 
calculate the equilibrium thermodynamic: properties of most atomic and molec- 
ular species that occur in usual gases and plasmas, and also the equilibrium 
constr~nts for chemical reactions that may occur between any of these species. 
Thus we can now calculate the equilibrium properties of chemically reacting 
gases. Consider first a single-chemical reaction and then proceed to over- 
lapping reactiolls where the simultaneous solution of more than one chemical 
balance equation is required. 

9.3 GENERAL RELATIONS IN CHEMICALLY REACTING GASES 

The chemical reaction is written in the form 

where the factors a,( are the stoichiometric coefficients for the species A i  
involved iil the reaction. The species with positive coefficients are con- 
sidered the reactants and those with negative coefficients are products. 

Although equation (9.1) is conventionally called a reaction equation, it 
should really be termed a chemical balance equation. The equilibrium 
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properties of a gas mixture do not depend on the reaction path, and tne set of 
chemical equations choqen to introduce the balance between species need not 
correspond to the most probable path. The actual reactions leading to the 
various species typically require multistep collision processes that involve 
a variety of excited rotational, vibrational, or electronic states rather than 
a simple, single-step process as suggested by many common reaction equations. 
However, the convention is firmly entrenched that the term reaction is used 
to signify the transition from reactants to products by whatever means. 

The equilibrium constant for the chemical equation may be expressed 
either in terms of partial pressures p i  or in terms of concentrations, usu- 
ally mol concentrations ni. The former, 

is most useful whenever properties are to be evaluated as functions of 
pressure and temperature; the latter 

is most useful when properties are to be evaluated as functions of density and 
temperature. 

Partition functions for each species involved evaluated at unit pressure, 
usually 1 atm, are used to determine K,; partition functions evaluated at 
unit mol concentration are used to deterrmine Kc. The pressul-e standardized 
part it ion function Qp is thus related to the complete partition function Q: 

while the ccncentration sta?,dardized partition function Qc is 

The equilibrium constarits in terms of these standardized partition functions 
are just 



:- where t h e  change i n  ze-o po in t  energy c r e a t e d  by t h e  r e a c t i o n  i s  
"% 
t 

and Aiz i s  t h e  t o t a l  number o f  mols changed i n  t h e  r e a c t i o n  

* 

-- Since only d i f f e r e n c e s  o f  energy a r e  involved,  t h e  re fe rence  energy can be 
e s t a b l i s h e d  i n  any c o n s i s t e n t  way. Conventionally,  t h e  zero p o i n t  energ ies  
Eo o f  atomic o r  homonuclear molecular spec ies  t h a t  a r e  s t a b l e  a t  STP (273.1' K, 
1 atm) a r e  taken t o  be zero;  then t h e  zero po in t  energ ies  o f  t h e  remaining 
spec ies  a r e  ad jus ted  a c c o ~ d i n g l y .  For example, N2  i s  s t a b l e  a t  s tandard con- 
d i t i o n s  and is  given t h e  va lue  zero f o r  Eo (N2), ignor ing e s s e n t i a l l y  con- 
s t a n t  f a c t o r s  such a s  nuc lea r  spin  and g r ~ u n d  s t a t e  v i b r a t i o n a l  energy. Then 
t h e  value  of E,(N), t h e  zero po in t  energy o f  t h e  N atoms, i s  h a l f  t h e  d i s soc i -  
a t i o n  energy of N2.  Compounds such as  NO have va lues  f o r  Eo equal t o  t h e  
hea t  o f  formatiqn from t h e  homonuclear molecular s p e c i e s , i n  t h i s  case,N2 and02. 
Elect rons  a r e  ' .ken t o  have a zero value  f o r  Eo and t h e  e n t i r e  energy of 

-. . , 
i o n i z a t i o n  i s  .issigned t o  Eo f o r  t h e  ionized p a r t i c l e s ;  thus  t h e r e  is no 
d i f f e r e n t i a t i o n  between e l e c t r o n s  formed i n  s i n g l e - ,  double-,  and t r i p l e - ,  and 
higher-order i o n i z a t i o n  processes .  

The equi l ibr ium constant  i n  equation (9 .2) ,  expressed i n  terms o f  mol 
f r a c t i o n s  x and t o t a l  p ressure  p ,  i s  

For A n  = 0, such a s  f o r  a simple exchange r e a c t i o n  A + BC-. AB + C ,  Kp i s  
independent o f  p ressure .  For reac t ions  such a s  d i s s o c i a t i o n ,  A2 -+ 2 A ,  o r  
i o n i z a t i o n ,  A -+ A+ + e ,  A n  = 1 and K;, is  p ropor t iona l  t o  t h e  f i r s t  power o f  
pressure .  Other A n  values  a r e  poss ib le  f o r  r e a c t i o n s  i n  general ,  o f  course  

The sum of  mol f r a c t i o n s  is  u n i t y ,  by d e f i n i t i o n :  

Equation (9.10) and (9.11) provide two independent equat ions  f o r  t h e  unknowns 
xi. I f  only  two-component spec ies  a r e  inv?l\red, a s  i n  d i s s o c i a t i o r ,  t h i s  i s  
s u f f i c i e n t  t o  so ive  f o r  both xi. I f  more than two spec ies  a r e  p r e s e n t ,  t h e  
remaining equations needed a r e  provided by t h e  conservat ion o f  mass o r  charge 
involved. For example, t h e  simple i o n i z a t i o n  r e a c t i o n  A -+ A+ + e irivolvcs 
t h r e e  spec ies ,  and t h e  t h i r d  independent equation i s  then given by charge 
conservation: 



As another example, the exchange reaction A + BC -* AB + C involves four 1 ,  

species; two independent equations are provided by conservation of the ratios 
of atomic species A to B and A to 2 for a given starting mixture of the gas: 

r ( A )  + x(AB) - 
~(Bc) + x(AB) - ' A : F  

The mass ratios YA:B and YA:C are known initial conditions; equations (9.13a) 
and (9.13b) coupled with equation (9.10) and (9.11) provide the four equa- 
tions needed to solve for the four unknown mol fractions in this case. If 
additional atomic species were involved, then additional equations such as 
(9.13) would exist which specify the atomic ratios given by the initial 
conditions. 

The above equations are solved for the mol fractions x in terms of 
either p and Kp or n and Kc, depending on whether the properties are to be 
evaluated at a given p al;d T or a given p and T. In addition, the deriva- 
tives (axi/aT), and (axi/aT),, required to evaluate the specific heats are 
found from theL solutions for thz Xi. 

At normal densities or densities larger by two to three orders of magni- 
tude, the gas is dilute enough that each component behaves as  an ideal gas. 
Then the equation of state can be expressed as 

The quantity Z is called the compressibility; at very high densities, com- 
pressibility reflects the effects of intermolecular forces, but here it repre- 
sents the number of rnols of gas produced by chemical reaction from each mol of 
gas present at some initial condition where the average molecular weight is 
M, : 

By convention, Mo is taken to oe the average molecular weight of the equilib- 
rium gas mixture at standard conditions (273' K and 1 atm pressure). For many 
applications, prope.ties such as energy, entrony, and specific heat are most 
useful when evaluated for a fixed quantity of gas rather than for a mol, since 
a mol of chemically reacting mixture may represent a changing amount of gas. 
The amoufit of gas in Z mols is a fixed qusntity, so the thermodynamic proper- 
ties are evaluated for Z mols. The dimensionless energy and enthalpy in Z 



e. 

Q" mols of gas mixture are (see eq. (1.73)) 
@. 

The dimensionless entropy in Z mols of gas mixture is (see problem 1.6) 

where the component mol entropies ( S / R ) i  ar.? evaluated at the total pressure 
p. The term ;xi in xi, often referred to as the entropy of mixing, simply 
represents the'correction required to transform the component mol entropies to 
the actual partial pressures involved. 

Specific heats involve one additional complication; the derivatives of 
the mol fractions are required in additicn to the rnol fractions themselves. 
The dimensionless specific heat at constant volume is given by 

The dinensionless specific heat at constant pressure is given by a sinilar 
expressioi~ 



Because of the  r e l a t i on  between t h e  pressure standardized and concentration 
standardized p a r t i t i o n  functions, the component energies and enthalpies  and 
the  component spec i f i c  heats  a r e  r e l a t ed  simply by 

r 

Thus the  t o t a l  ent!lalpy o f  t he  mixture can be obtained simpl) from the  t o t a l  
eneTgy ' 

and vice versa. The difference between the  t o t a l  spec i f i c  heats  is no longer 
the  gas constant,  however, but 

The products Zxi can of ten be expressed a s  r e l a t i v e l y  simple functions o f  
the f rac t ion  of  reactant  species  transformed t o  product species  by reac t ion .  
The der iva t ives  a t  constant pressure and constant density can be r e l a t ed  t o  
the derivat ives  (d  In Kp, 'dT)  and (d  In K,/dT) , respect ively.  According t o  
equation (9.6) and (9.7), 



9.4 DISSOCIATION OF DIATOMIC MOLECULES 

Consider the simple dissociation reaction 

A2 f 2A 

The pressure standardized equilibrium constant for this reaction is 

where B is the dissociation energy. Let f be the fraction of A2 that is 
dissociated and x ,  the mol fraction of A formed; then (1 -x) is the mol 
fraction of A2 remaining: 

The compressibility 2 is the number of mols of gas produced per initial 
mol of A 2 :  

The fraction f, or the mol fraction x, is determined from the relation 
between the equilibrium constant and the particle pressures 

With f detmnined, the dimensioniess cnthrtlpy in R ~nols of the dissociated 
gas is simply (see eq. (9.17)) 



while the dimensionless entropy is (see eq. (9.18)) 

? 
= 1 -  +2f(g)A-(l-f)tn(l-n-2f t n ( ~ n + ( 1 + n t n ( i + n - ~ n p  

A 2 I I- 

(9.34) 

and the specific heat at constant pressure is (see eq. (9.20)) 
; ! i  r * : 

The last term in equat? JI- (9.35) is approximately the product of ( 2 0 3  Zn T) 
and DlkT since P 

and DlkT is much larger than the derivatives that follow. 

The specific heat at constant volume is given by an expression similar to 
equation (9.35) : 

The fractions f and x behave something like step functions, starting at 
zero at very low temperature, rising rapidly in the reaction region of temper- 
ature where D/kT is the order of 10, and asymptotically approaching unity at 
high temperature. Thus the derivatives ( a f l a  In T )  are sharply peaked in this 
region and the last tens in equations (9.35) and ( 9 . 3 7 )  dominate, because of 
the peaked derivative and the large kedlue of DlkT .  Thc specific heats are 
thus sharply peaked also. The derivative ( a f / a  Zn T ) p  is, according to 
equations ( 9 . 3 2 )  and ( 9 . 2 5 )  , 



To evaluate the properties above et given density and temperature, the 
- .  / concentration standardized equilibrium constant is used, a quantity express- 

i ible in tenns of the number of mols per unit volrlme, 
L 
,'I L 

C. 

- In this case, the solution for f is a slightly more complex quadratic 
.-- relation 

From equations (9.40) and (9.26), the derivative (a f/a Zn T! is 
P 

9.5 DISSOCIATION OF N2 

To illustrate the above calculations, dissociation of pure N2 is used as 
the example. The calculations are simplified by truncating the electronic 
partition functions after the first few low-lying tenns and by neglecting all 
interaction terms between electronic, vibrational, and rotational energy. 

Problem 9.1: Show that the logarithm of the translational  artit it ion function for 1 arm of pressure 1s 

Q,, = 5 2n T t 5 T W F :  - 3 . 6 6 ~ 1  
2 

( L ' . 4 3 J  

where T is in 'K  alid M is the molecular wetkht in atonlc mass units ( 1 . ~ 5 9 7 ~ 1 0 - ~ ~  gm).  

The logarithms of the partition functions involved in the nitrogen 
dissociation calculation are approximately 



and the equilibrium constant in pressure units is 

The component energies are 

'The dimensionless cnthalpy, Z.I/RT, in Z moi i of tli; N2 and N mixture 
is graphed in figure 9.2. .his ratio increases sllghtly at low temperature 
bxause of the excitation of vibrational energy the molecules. indepcnd- 
erit ly of pressure. The enthalpy jumps urnrard ar; the atoms appear with their 
large zero point energy D / L .  As the dissociat i e n  ;~rocccd*; tto completion, the 
ratio tends toward the limit 312 + DIZkT, eji~ept that ~I~ctrronic: excitation 
begins to assume some importance and, as the dotted curves shoh, the ioniza- 
tion reactions begin to have large effects at high T. 

DlSSOClAT ION / I  / / 
PLUS IONIIAT13N-.. ,/ ,/ 

Results of calculations for ::: 1 -.'/ -/' / _ - pressures of 1, and 
lo2 atm are shown in figure 2.1 

hl DISSOCIATION ONLY. for compressibility. The com- 
1.8 - pressibility is unity until dis- 

The entropy ratio SIR for dissociating nitrogen is sh.3wn in : ' lg~ise 9.3. 
Entropy increases smoothly with temperature except for +he jump thrt appears 
in the temperature interval where dissoc . it ion occurs. Anotlrcr jum!) s;p.::>r.- 
as the iorlization reactions occur (dotted lines). 

=! ' 1.6 - l o o  atm sociation stsrts at temperatures 
C.0001 8 1.4 - ' / on about pressure. 4000' to The 700u0 reaction K, depending is 

8 
1.2 

1.0 

/ inhibited at the higher pr, -ssures 
- according to the law of mass 

action because two mols of prod- 
1 

- i i  I 
uct species are produced from 

o 2&0 4& 6 & 3  edOO , o . m  each mol of reactant. The com- 
TEMPERATURE T, deg K pressibi lity ar;:.r7pt~ti~al ly 

approaches two as the dissocia- 
Figure 9.1.- Compressibility of nitrogen tion proceeds to completion. As 

(- dissociation only, ----  dissoci a- temperature increases fiirther, 
tion plus ionization). *.he atoms are ionized. The 

<ottcd lines show t!ie effect of 
including the ionization reactions (discussed sub::rquently) and indicate the 
limits of validity for the model which treats nitrogen as a gas with the 
single dissociation reaction. 



r ! 0 2000 4000 6000 8000 10,000 
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Figure 9.2.- Enthalpy of nitrogen 
(- dissociat ion only, ---- dissociation plus 
ionization) . 

Specific heat a t  constant pressure 
and the  r a t i o  of speci f ic  heats a r e  
shown i n  figures 9.4 .and 9.5, respec- 
t ively.  The speci f ic  heat increases 
s l i g h t l y  a t  low temperature from 5R/2 
t o  7R/2 as  the  molecular vibrat ional  
energy is  excited. Then, a s  the  disso- 
c ia t ion  reaction appears, the  spec'fic 
heat goes through a very large maximum, 
principal ly because of the  peak i n  the  
term (D/2) ( ~ Z X / ~ T ) ~ ,  t ha t  is, the  prod- 
uct of atomic internal  energy and mol 
fract ion derivative. The e f fec t  of 
ionization reactions is not indicated, 
but the reader can predict tha t  another 
large peak w i l l  occur where the  slope 
of the compressibility curve (f ig.  9.6) 
goes through another maximum. This 
peak w i l l  be even larger  than tha t  due 
t o  dissociation because the internal  
energy of the  N+ ions i s  even larger  
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Figure 9.3.- Entropy of nitrogen 
(- dissociat ion only, ---- dissociat ion plus 
ionization) . 
140 r 

C z 

Q loo t I'i'"l 

1 1 I 1 J 

2000 4000 6000 8OOO 10.000 
TEMPERATURE T, deg K 

Figure 9.4.- Specific heat a t  con- 
s t a n t  pressure fo r  dissociat ing 
nitrogen. 



Figure 9.5.- Ratio o f  speci f ic  heats  f o r  dissociat ing nitrogen. 

0 
0 

5000 l0,Ooo 15,000 
TEMPERATURE T, deq K 

Figure 9.6 . -  Compressibility of dissociating, ionizing nitrogen. 

than t h a t  of the  atoms - namely the  sum of D / 2  plus the ionization energy I. 
The r a t i o  of speci f ic  heats shown i n  f igvre 9.5  s t a r t s  near 7 / 5 ,  the  

value f o r  r i g i d  diatomic ro ta tors ,  decreases t o  9 / 7  a s  the  vibrat ions a re  
excited, then drops fur ther  a s  the  spec i f i c  heats  increase. The maximum i n  
Cv occurs at  s l i g h t l y  ' Juer temperature than the  maximum i n  Cp, so the  r a t i o  



takes an extra "wiggleu near the minimum and then finally rises to the pure 
monatomic gas value. This value would be 5/3 except that the contribution of 
the electronic partition function for atomic nitrogen becomes appreciable at 
this point. The ionization reactions also cieate additional effects at those 
temperatures where the deviations from the pure dissociating gas model are 
indicated in figures 9.1 and 9.2. 

9.6 COMBINED DISSOCIATION AND IONIZATION 

As indicated previously, the ionization reactions, as well as the 
dissociation resction, must be considered at higher temperatures. The simple 
diatomic gas becomes a complex chemical mixture with the following reactions: 

Exact solutions for the mol fractions of the species involved requires simul- 
taneous solutions of several nonlinear equations, which can be accomplished 
with good accuracy on electronic computers by iterative methods. In many 
cases, the reactions can be decoupled to a good approximation because the 
ionization energies are typically much larger than the dissociation energy. 
For exa-mple, dissociation energies are typically the order of 5 to 10 eV, 
while the single ionization energies are the order of 15 eV, and multiple ion- 
ization energies increase many electron volts for each additional electron 
removed. Except at very high pressures, the order of lo3 atm or more, these 
reactions can be treated as though one is complete before the next begins. At 
high pressures, the reaction zones spread over broader ranges of temperature 
until appreciable overlapping occurs. Even then, the solutions can usually be 
approximated very well by treating only two or three reactions simultaneously 
rather than the entire set. 

To illustrate the decoupled reaction approximation, consider solutions to 
equations (9.49) by this method. First, equation (9.49b) is ignored initially 
because the fraction of molecular ions, A:, is typically very small compared 
with the other species and does not significantly influence the thermodynamic 
properties. This species is added later by a small perturbation of the first- 
order solution for the major species. The remaining reactions are decoupled 
to a good approximation. We consider ionization only up to A", which is 
sufficient for temperatures up to 15,000° K i.n a typical case such as nitrogen, 
but the reader can readily extend the method to include higher-order ioniza- 
tion if desired for still higher temperatures. Let fl bc the fraction of 
molecules dissociated; f2, the fraction of atoms singly ionized; and f 3 ,  the 
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fraction.of singly-charged ions that are doubly ionized. The compressibility 
is the number of moles produced from each mol of Ap and can be expressed in 

i 
I 

the decoupled approximation 

Z = 1 + fl + 2f2 + 2f3 (9. SO) 

The pressure standardized equilibrium constants for the dissociation 
reaction, the single-ionization reaction, and the double-ionization reaction 
are designated K,, Kg, and Ky, respectively: 

=A2 K, =-p - 4f1 ' 
(9.51a) C 

xA2 1 - f12 

x ~ + x e  f2 
K t 3 ' P 2  x~ 1 - fZ2 (9.51b) ,.- 

XA++ xe f3(l + f3) 
K ' " r  P = (2 + f3) (1 - f3) (9.51~) 

In the right-hand expressions for K,, KB, and K , we have assumed that 
Z = 1 + fl for equation (9.51a). Z = 2 (1 + f2) lor equation (9. ~lb), and 
Z = 2(2 + f3) for equation (9.51~) so that the equations can be decoupled. I 
The mol fraction of electrons in the last equation is xe = 2 (1 + f 3)/Z since 
the electrons formed in the previous single-ionization reaction must also be 
counted. The reader can readily extend the procedures to triple, quadruple, 
and higher-order ionization. 

The solution to equation (9.51a) is the same as for equation (9.32) used 
previously for the pure dissociating gas model: 

4P + K, 
(9.52a) 

i 
I 

The solution to equation (9.51b) is I 

(9.52b) 
jf 

f 2 =  - / 

I while the solution to equation (9.51~) is 
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To provide a smooth and continuous solution, the approximate mol 
fractions used in equations (9.51), which assume complete decoupling between 
reactions, are replaced by 

These mol fractions add to unity as required. With the mol fractions all 
determined, the equilibrium thermodynamic properties can be calculated readily 
from the usual summation relations, equations (9.16) , (9.17) , and (9.18) . The 
specific heats given by equations (9.19) and (9.20) require derivatives of the 
2x5 products which are derived from equations (9.52) and (9.53) and lead to 
relations for df ldT that involve the derivatives d Zn K/a?7' similar to 
equations (9.38) and (9.42). 

Problem 9.2: Derive expressions for [ a ( Z y ) / a T I p  in terms of the derivatives ( d  In Kp/dT1 for the system 
described by equations (9.51). (9.52), and (9.53). Express the fractions f,, f2, and f 3  In terms of concentra- 
tion standardized equilibrium constants Kc and find the derivatives [3(Z~i)laT)~ for the abovc system in terms 
of the derivatives (d Ln K,/dT). 

For many problems, trace elements of certain species may be important 
even though they appear in such small quantity that they do not influence the 
thermodynamic properties of the gas. For example, rather strong band spectra 
are observed from N; even though the concentration may be only a fraction of a 
percent. The concentration of trace amounts can be estimated if the mol frac- 
tions of the major species are assumed to be unchanged. For example, a trace 
amount of A; formed according to the chemical 3alance equation (9.49b) is 
approximately given by f 

f' 

' T  
x ~ 2  

"A; = .., (9.54) 

where xA and xe are the major species mol fractions determined above with 
? 

the decoupled reaction approximation and Kg is the equilibrium constant 
given by 

+ 
In Kg = -g+ Zn Q(A2) + Zn Q(e) - 2 Zn Q(A) (9.55) 
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I and I is the ionifation energy and D i s  the dissociation energy of A p .  The 
". . mol fraction of A p  could be estimated equally well from other chemical i 

balance equations that involve the molecular ion, such as 1 / 

since, as mentioned previously, the equilibrium properties do not depend on 
the reaction path. However, the reaction (9.49b) tends to be the rate con- 
trolling step in the formation of the molecular ion for most diatomic mole- 
cules, -rather than reactions (9 .49b1) or (9.49bw). For example, it has a 
smaller activation energy than (9.49b1), and the lower activation energy 
process takes greater advantage of the many low energy collisions that occur 
in gases with Boltzmann kinetic energy distributions. Reaction (9.49bN) 
requires a three-body collision which is less likely than the two-body colli- 
sion process at usual densities, the third body being required to carry away 
the excess kinetic energy so that the A; ion becomes stable. 

9.7 DISSOCIATING AND IONIZING NITROGEN 

' i 

I To illustrate the above procedures, the approximate solutions for 
dissociating and ionizing nitrogen are considered. In addition to the parti- 
tion functions for N and N given by equations (9.44) and (9.45), the parti- 

f tion functions for N', N+*, N;, and electrons are required. From known atomic 

I constants (ref. l), these are approximated as in reference 2: 

The additional equilibrium constants for single ionization of atoms, double 
ionization of atoms, and the formation of molecular ions from atomic 
collisions are 



k 60 

- 
+ZnQp(e)-2tnQp(N) (9.62) \ 

Using these values for the 
equilibrium constants, one obtains 
the compressibility shown in fig- 
ure 9.6 and the enthalpy ratio 
ZEIRT shown in figure 9.7. The w 
double ionization of atomic nitrogen 
has very little effect below 
15,000° K exce t at pressures much 

ionization of molecular nitrogen is 
lower than 10-e atm. Similarly, the 

2i 

negligible except at pressure much 
higher than 100 atm. The mol frac- 
tions of the different chemical 

I I J 

0 So00 10,000 15,000 
species in equilibrium nitrogen are TEMPERATURE T, deg K 
shown in fi ure 9.8 for pressures of 
1.0 and lo-! am. For most practi- Figure 9.7.- Enthalpy of dissociating, 
cal purposes, the electron and N+ ionizing nitrogen. 

(a) 1.0 atm (b) 0.0001 atm 

Figure 9.8.- Equilibrium mol fractions in nitrogen. 
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aol fractions are equal in this range of T and p ,  and only small traces of 
N$ and N++ appear. The graphs are similar in appearance; only at higher 
pressures the dissociation and ionization reactions that increase the total 
number of particles are delayed until higher temperatures. The production of 
Ni is also promoted at higher pressure at the expense of the dissociated pair 
N. + N+. 

9.8 PROPERTIES OF GAS MIXTURES 

In the exaqles given abbve, we saw how even a pure gas such as nitrogen 
becomes a rather complex, chemically reacting mixture at high temperatures, 
involving four or five principal species and traces of others. A simple gas 
mixture such as N2 and O2 becomes more complex yet. Besides the .dissociation 
and ionization of oxygen, which more or less parallels that of nitrogen, 
nitric oxide is an important species produced at intermediate temperatures: 

Typically, nitric oxide concentration is a percent or less of the total at 
normal pressures and lower. It does not greatly influence the thermodynamic 
properties of the mixture at these levels since the molecular energies are all 
comparable to those of the 02 and N2 species it replaces. However, NO has two 
very strong radiation bands (the NO 8 and y bands) in the violet end of the 
optical spectrum and is responsible for much of the radiation observed from 
high-temperature air. More importantly, the ionization energy of NO is rather 
low, about 9.24 eV, and the major source of electrons in air at moderate 
temperatures (5,000° to 10,000° K) is NO ionization: 

To a first approximation, mol fractions of NO, .NO+, and e can be estimated at 
pressures of 1 atm or less by the small perturbation method used to find N$ in 
the preceding example of nitrogen ionization. A t  higher pressures, these 
s ecies concentrations must be solved simultaneously with the Opr N2, 0 ,  N, 
0 ! , o+, Nz, and N+ species concentrations if high accuracy is required. The 
electrons produced from NO, even though only a very small mol fraction, are 
sufficient to absorb essentially all the microwave signals beamed through high- 
temperature air. These electrons are produced in the hot gases about satel- 
lite and %pace vehicles entering the earth's atmosphere, for example, and arc 
responsible for the communications blackout observed during the reentry period 
of these v'ehicles. 0; and 0' ale also important species responsible for 
scavenging some of the electrons. 

In addition to the above species, N02, N20, and 03 are formed in trace 
amounts. Dry air contains traces of C02 and A which lead to CO, CO+, C, c+, 
and A+ in small but noticeable amounts. Normal atmospheric gases also contain 
sizeable amounts of water vapor, which leads to OH, OH', H, Hs, H', H-, CH, 
and other species. Precise calculations require simultaneous solutions for 
30 or 40 species for dry air alone, more for moist air. Relatively precise 
calculations for dry air have been performed by Hilsenrath and Beckett (ref. 3) 
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and by Gilmore (ref. 4) ,  among others. Calculations done before 1955 were 
based on a low value for N2 dissociation and are not accurate. Approximate 
solutions based on the decoupled reactior, method, neglecting the effects of 
NO, were published by Hansen (ref. 2). Machine calclllations of thermodynamic ,i / 
properties were made for hydrogen (refs. 5 and 6 ) ,  pure CO2 gas (ref. 7), and I 

C02-N2 mixtures that simulate the Martian atmospt~zre (ref. 8) ,  among others. 
With modern, high-speed, digital computers, the complexity of the mixture does 
not present a severe problem. I -  - 

1 1 

i , Chapter 10 considers soFe examples of solutions to the flow of gases and I 

to the speed of sound in gases which can be obtained from the equil-ibrium I 

thermodynamic properties of the gas. , . r 

9.9 CONCLUDING A.3ARKS 

Even very simple gas mixtures become a complex mixture of reacting 
chemical species at high temperature, and precise solutions for the equilib- 
rium properties of such gases require iterative methods on digital computers. 
However, reasonably good approximate solutio~?~ can often be obtained by treat- 
ing :he reactions as independent of one enother whenever the characteristic 
energies of these reactions differ by several electron volts or more. This 
approximation is particularly good at low pressures or densities where each 
dissociation and ionization reaction occurs over a relatively narrow tempera- 
ture span. Then one reaction is completed before the next begins. liigh- 
temperature air is an example where this approximation is useful since the 
characteristic reaction energies are reasonably well spaced: about 0.2 eV for 
vibrational excitation, 5 eV for 02 dissociation, 9 eV for N2 dissociation, 
15 eV for single ionization of both N and 0, and much higher energies for 
multiple ionization of the atoms. Sucli approximate analytic solutions are 
useful first estimates for precise numerical cotnputer iterative solutions of 
the equilibrium properties. For air, the production of NO and the ionization 
of NO are the most important reactions that need to be added to the system. 

At high pressures or densities, the uncoupled reaction approximation 
breaks down because the dissociation and icnization reactions then occur over 
a relatively broad span of temperature, and the different reactions overlap at 
pressures of 100 atm and higher in air, for example. Iterative numerical 
solutions are then required. 

As any given reaction runs its course, beginning at low temperature and 
completing at higher temperature, the energy, enthalpy, and entropy functions 
are rather suddenly increased, and the specific heats increase to a very high 
peak. The specific heat at constant volume peaks before the specific heat at 
constant pressure in any reaction that increases the number of gas particles 
(such as dissociation or ionization). Then, in this case, any quantity that 
depends on the ratio of specific heats, such as the Prandtl number, goes 
through an S-shaped oscillation with both a minimum and a maximum. 
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CHAPTER 10 - SOME APPLICATIONS OF EQUILIBRIUM THERMODYNAMIC 
PROPERTIES TO CONTINUUM GASDYNAMICS 

The speed of sound for the propagation of isentropic disturbances in a 
gas is developed, including corrections for chemical reaction. The term "zero 
fr~quency~~ is used to describe this isentropic limit sound speed; the tern 
signifies that changes in the gasdynamic variables are all very slow compared 
with the chemical rate changes in the gas. A faster, nonisentropic speed of 
propagation occurs for disturbances where the changes in gasdynamic variables 
are fast compared with the chemical rate changes. In the limit, this is known 
as the Ifinfinite frequencyn or llfrozenl' sound speed - the former term calling 
attention to the very high frequency of the disturbance, the latter term 
calling attention to the frozen character of the chemical reactions under such 
rapid changes of state. 

The true sound speed for a disturbance of finite frequency is :zhown to be 
between these two limits and is expressed in terms of the chemical relaxation 
time. The Riemann invariants that are t!seful in determining the changes in 
flow speed along characteristic directions in supersonic flow are derived in 
terns of integrations of acoustic impedance, and example results ore given for 
air. Next, solutions for one-dimensional, shock-tube flow produced by the 
sudden release of a high-pressure reservoir gas into a lower pressure test gas 
region are derived, first for ideal gas, then for shock waves in a vibrating 
diatomic gas, and finally for dissociating and ionizing gases. Shock propaga- 
tion into still gas, shock reflection from a plane end wall, unsteady expan- 
sion waves created in the driving reservoir gas, steady expansion waves at an 
area discontinuity between the reservoir and the shock tube, and interactions 
between the reflected shock wave and the gas interface between the shocked gas 
and the expanded reservoir gas are all treated. 

10.2 INTRODUCTION 

We consider here applications of the thermodynamic properties of real 
gases, such as developed in the preceding chapters, to a few problems in con- 
tinuum gasdynamics. First, the speed of sound in the gas is derived and the 
Riemann invariants used to calculate changes in velocity and other fluid prop- 
erties along characteristic lines in supersonic flow (ref. 1) are developed. 
Then the effects of real gases on the properties of gas flows produced in 
shock tubes are deduced. 



10.3 SPEED OF SOUND IN GASES 

where e is the specific energy, th~.t is, energy per unit mass. For conserva- 
tion of total specific enthalpy, 

4.. 

I 
l 
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where a is the velocity of the disturbance through the gas. From equa- 
tions (10. l) and !10.2), the momentum flux is found to vanish, 

& + p a d a = O  (10.3) 

The speed of sound is, by definition, the speed with which s disturbance 
of vanishingly small strength propagates through the medium. This speed is I 

generally a function of frequency. When the period of a periodic disturbance 
4 

is the same order as the characteristic relaxation time of some process in the 
gas, such as vibrational excitation, dissociation, or ionization, the disturb- 
ance wave is dispersed and rapidly attenuates as it propagates through the 
medium. The characteristic relaxation times of such kinetic processes dep3nd ' :. 

on the temperature and density of the gas, and a very complex relation between 
sound speed and gas properties ensues. These , lations properly follow a 
study of collision-induced rate processes in gases, but for the present we can , 

examine two limiting cases, knowing only the thermodynamic properties of the 
gas, namely, completely isentropic flow in which the g ~ s  is everywhere in 
total equilibrium throughout the disturbance wave,and frozen flow in which the 
kinetic reaction essen:islly freezes for the period of tho disturbance. 

Consider first a disturbance with such low frequency that the gas can 
completely relax to equilibrium conditions throughout the wave, that is, the 
wave frequency w is much less than the relaxation time (r'l) for any process 
that contributes appreciably to changes in the thermodynamic properties of the 
gas. Since the disturbance is presumed to be very weak, dissipation terms 
may be neglected and the flow treated as isentropic: 

In addition, mass conservation requires that 

i 

whence 
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Equation (10.5) is  the  bas ic  expression for  the  ve loc i ty  with which an 
--.+ - . 
.. , .. isentropic  disturbance Propagates through a medium. This r e l a t i o n  is  

expressed next i n  terms of  spec i f i c  hea ts  and der iva t ives  with respect t o  tem- 
perature. Consider e a s  a function of p and p with equation (10.1) : 

I' 
1 .. 

The derivat ive ( d s / ~ @ ) ~  can be expressed a s  

Then, from equations (10.6) and (10.7) , 

According t o  a well-known theorem about p a r t i a l  der iva t ives  of  impl ic i t  
functions o f  th ree  variables  ( re f .  2) , 

Thus 

Now, from equations (10.5) and (10. l o ) ,  

2 89 R~RODUCIBILITY OF THE 
t )ttR;lb.A~, :%G3 IS POOR 
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/ 7his is t h e  usual r e l a t i o n  f o r  i dea l  gases except f o r  t he  correct ion term i n  

brackets. This correct ion term is s l i g h t l y  l e s s  than un i ty  f o r  d i ssoc ia t ing  
and ionizing gases, according t o  t h e  law o f  mass act ion.  A s  T increases  at 
constant p ,  p increases,  and while 2 a l s o  increases ,  t h e  increase i n  Z 
is inhib i ted  by t h e  increase in  pressure.  Thus 2 does not increase a s  

. . 
! 

rapidly a t  constant densi ty  a s  it would a t  constant pressure: 
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a pe r fec t ly  general r e l a t i o n  regardless  of t he  s t a t e  o f  t h e  gas, i f  t he  
disturbance is isentropic .  I f  t he  equation of s t a t e  is expressed i n  t e r n s  of 
t h e  compressibi l i ty  2, 

. . 

E =  0 z ($)T , 

j me correct ion f ac to r  is  uni ty  f o r  any gas where Z is cons t a i t ,  t h a t  is, 
I 
i where t h e  react ions t h a t  occur i n  t h e  medium do not change the  number of  gas 

p a n i c l e s .  
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n 1.5 - The speed-of- sound parameter 
o.ooo~ otm (a2p /p )  is  shown a s  a function 

of  temperature a t  various pres- 
sures  i n  f igure  10.1 f o r  d i ssoc i -  
a t i n g  nitrogen, neglect ing the  
ionizat ion react ions.  

For very high frequency, t he  
chemical react ions cannot follow 
the  rapid changes i n  pressure and 
temperature produced by the  d i s -  
turbance wave, and the  reac t ions  

0 . 2000 4000 M~00 8000 10,000 a r e  s a id  t o  be frozen. Then 

_ : . 
the square o f  t h e  speed o f  sound can be expressed a s  f . ;? 

. L .,A 

TEMPERATURE T, deg K 

- . .  4 ..... 
- . : .  , 1 -  j;* 

d 

E 
Figure 10.1.- Speed of sound parameter f o r  a2 = Yf ,-, (10.15) 

vibrat ing,  d i ssoc ia t ing  nitrogen which is t h e  same a s  t he  idea l  
( ionizat ion react ions frozen) . gas r e l a t i o n  except t h a t  t he  

r a t i o  of  spec i f i c  hea. s y must 
include only those in te rna  f 
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degrees of freedom in equilibrium with the kinetic energy. For a gas mixture 
with mol fractions x*, 

where ni is the number of internal degrees of freedom of the component i 
t 

in equilibrium with the kinetic energy. For atomic particles and electrons, 
= 0 .  For diatomic particles, the rotational energy is normally in full 

equilibrium with the kinetic energy and n; = 2. For nonlinear polyatomic 
, molecules, three rotational modes are present and q = 3. Vibrations, on the 

other hand, normally require a large collision number Zc, of the order of 
lo3 - lo6, before they become fully excited. If the frequency is greater than 
Oc/Z,, where ec is the collision rate, the vibrational modes are frozen. 
(Note that the gas is essentially opaque to frequencies greater than O,, and 
disturbances do not propagate effectively in this case.) At frequencies much 
less than Oc!Z,, vibrations are also excited. Then, for dtatomic particles, 
q = 4; for linear triatomic particles, q = 10; and for nonlinear triatomic 
particles, ni = 9. At very high temperature (high collision velocities), Zc 
approaches unity, and the internal degrees of freedom tend to remain in equi- 
librium with kinetic energy even at very high frequencies. At very low den- 
sity, the collision rate becomes small and only low-frequency waves propagate 
through the gas. 

In accord with the above, at normal temperatures in a diatomic gas, 

yf 715. At temperatures where dissociation barely starts, the vibrational 
relaxation is typically very fast and yf + 9/7. When dissociation is 
complete, yf + 513. 

Where a rate process occurs in the gas with a characteristic relaxation 
time T of the order of the reciprocal frequency u'l, disturbance waves 
propagate through the medium with a speed between the frozen speed af and 
the equilibrium speed a,: 

The amplitude,,v(x), of a disturbance represented by the function 
u(x,t) = v(x)e~w* is the solution to the wave equation (ref. 3) 
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which is a damped sine wave with the speed 
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The wave is aamped by the exponential factor 

I- 

I 

i When w or T vanishes, .r + ae and the damping is negligible. On the other 
hand, when UT becomes very large, a + a f  and damping also becomes large 
with an absorption path 2 a p /  [(af/ae) - 11. 

i, -=., g: 

10.4 RIEMANN INVARIANTS 

The change in velocity of an isentropic flow along the characteristic 
directions in supersonic flow is given by (ref. 1) 

where subscript < refers to initial conditions and 2 is the reciprocal 
acoustic impedance (pa)'1 (i. e. ,  the acoustic admittance) integrated with 
respect to pressure : 

The positive sign in equation (11). 23) corresponds to changes along the posi- 
tive characteristic in the time-distance ( x , t )  plane: 

where u is the flow velocity; the negative sign corresponds to changes along j 

the negative characteristic, i 
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& x =  u - a (10.25b) 

Equations (10.24) and (10.25) determine all the changes of gas properties in 
ope-dimep,sional isentropic flow, through the dependence of velocity on pres- 
sure. SteWnce only differences of the quantity 2 are required, the lower 
liu it o; the integral in equation (10.24), p,, is arbitrary. Typically, po 
is tak.11 to equal zero so that 2 will always be positive. The so-called 

the sum and difference 

u + Z = 2 r  (10.26a) 

Once t h l  se are established at any point ( x i ,  ti) in the flow with known con- 
ditions, the remaining flow in the x , t  plane may be calculated, provided the 
flow is isentropic, that is, shock free. 

A t  Low temperatures where the gas behaves ideally, the isentropic rela- 

i tion between pressure and density is 

and tihe speed of sound can be expressed as 

The quantity Z is then given by 

where po = 0 has b v n  chosen as the reference level. 

The quanti t; Z/Z* for air is calculated in figure 10.2 for zero 
frequency, w h ~ ~ e  the speed of sound is the equilibrium value given by equa- 
tion (10.1". The quantity Z* is the ideal gas value given by equa- 
tion (10 -3) where y = 1.4 and a = (yRT)l12. The effects of,, vibration, 
dissocf. ..tion, and single ionization of the air particles are 'included, but the 
NO .mation rrection was omitted for convenience in calculation. Details of 
thc calculation may bs found in reference 4. The ratio ZIZ* is shown for 
constant entropy va~ues ZSIR of 30, 40, 50, 60, and 70 and for constant 
pressure values of los2, lo0. and lo2 atm. 



The utility of the integral 
2 in one-dimensional flow prob- 
lems results from the fact that it 
is a function only of local gas 
properties; thus Z need be com- 
puted only once for any given 
entropy and pressure (or density 
or temperature) and tabulated or 
graphed as in figure 10.2. Far 
two- or three-dimensional flow, 
the relations between changes in 
flow properties depend not only on 
local gas properties, but on the 
initial or stagnation conditions 
as well. For example, the change 
in Prandtl-Meyer expansion angle 
may be expressed as 

' 0  2 4 6 8 10 1214,000 
TEMPERATURE, deg K where the integral is performed 

along a constant isentrope. The 
Figure 10.2.- Riemann integral for air limits of the integral are func- 

compared with ideal gas values for tions of the local enthalpy per 
constant specific entropy. unit mass h i  and the stagnation 

enthalpy ht: 

Thus, in this case, a third dimension must be added to the table of the 
Prandtl-Meyer angle for real gas expansions, which would specify the 
stagnation conditions. 

I 
I Kith this introduction to the effects of real gas on the speed of sound 

and derivative quantities in mind, next consider the flow of real gases in 

i shock tubes. 

I 
10.5 SHOCK-TUBE FLOW 

The shock tube is a well-known device used to produce uniform samples of 
gas at precisely known temperatures and pressures for a limited time duration. 
The situation is idealized here by neglecting the effects of boundary-layer 
flow and assuming that the flow is one-dimensional throughout. These ideali- 
zations are realistic if the shock tube is not too long (length diameter ratio 
of the order of 1C0 or less) and if the gas pressure is not loo low (the order 
of 10'~ atm or higher). 



The mathematical theory of shock waves and expansion waves is e legant ly  
t r ea t ed  by Courant and Friedrichs ( re f .  1). Glass and Patterson ( r e f ,  5) give 
a good summary of  t h e  shock-tube r e l a t i ons  f o r  idea l  gases, and a de t a i l ed  
account o f  t h e  mathematical der ivat ions f o r  idea l  gas, shock-tube flow is 
given i n  reference 6 .  When gases do not  obey t h e  idea l  gas law, such a s  d is -  
soc ia t ing  and ionizing gases, t h e  shock-tube r e l a t i o n s  cannot be given analyt-  
i c a l l y  i n  terms o f  i n i t i a l  conditions,  bu t  must be  obtained by i t e r a t i v e  
procedures. Brief ou t l i nes  of  these  procedures a r e  presented by Romig ( r e f .  7) 
and Feldman ( re f .  8) . 

The shock tube involves a number of 
d i s t i n c t  flow regions, a s  shown i n  the  time- 
dis tance diagram i n  f igure  10.3 (a). The i n i -  
t ia l  condition of  t he  shock tube, with a high- 
pressure reservoi r  ( reg ion4) ,  a low-pressure 
t e s t  region (region I), and a diaphragm o r  quick- 
ac t ing  valve separating the  two regions i s  
diagrammed i n  f igure  10.3(b). A shor t  t5.me 
a f t e r  ihe diaphragm i s  ruptured, o r  t h e  valve 
opened, a shock wave forms and t r ave l s  down 
the  tube, followed by t h e  expanding kigh- 
pressure dr iver  gas, ( f ig .  10.3(c)).  The 
contact between the  t e s t  gas and t h e  d r ive r  
gas is shown as  a surface,  but i n  high-energy 
shock tubes t h i s  is typ ica l ly  a mixing zone 
of f i n i t e  width. The expansion wave o r i g i -  
nat ing a t  t he  diaphragm may consis t  of both 
an unsteady expansion E, t h a t  acce lera tes  
t he  driven gas t o  t h e  proper ve loc i ty  in t he  
one-dimensional channel and a s teady-state  
expansion Ee t o  match the  flow ve loc i t i e s  
across t h e  s t e p  i n  a rea  r a t i o s  from d r ive r  
chamber to  t e s t  chamber. An unsteady expan- 
s ion Eb a l so  feeds back i n t o  the  d r ive r  
chamber t o  equal ize t he  pressures involved. 

DISTANCE, X - 
(a) Time-distance diagram. 

DIAPHRAGM OR FAST 
OPENING VALVE 

CD 1 

(b) I n i t i a l  condition. 

(c) Incident shock propagates 
down tube a f t e r  diaphragm 
burs t .  

The gas compressed by the  shock wave (d) Shock r e f l ec t ed  from end 
(region 2) is  elevated i n  temperature and wall propagates back i n t o  
pressure t o  values uniquely r e l a t ed  t o  t he  tube. 
shock veloci ty ,  an e a s i l y  measured quantity.  
This gas i s  o f ten  used a s  a t e s t  specimen. Figure 10.3. - Shock-tube flow. 
The t e s t  duration - the  time in t e rva l  between 
the  appearance o f  t he  shock and t h e  contact 
region a t  t h e  t e s t  s t a t i o n - t y p i c a l l y  var ies  from t h e  order  of a millisecond 
a t  moderate shock speeds t o  microseconds a t  very high shock speeds. The d r ive r  
gas may be of  low molecular weight, such a s  He, t o  obtain higher shock veloc-  
i t i e s  and higher t e s t  gas temperature f o r  a given pressure.  The d r ive r  gas 
may a lso  be heated t o  provide s t ronger  shocks. Typically,  however, higher 
temperature t e s t  gas is  obtained by r e f l ec t ing  t h e  shock from the  end wall of 
the  tube. This s i t ua t ion  i s  diagrammed i n  f i gu re  10.3(d). The t e s t  duration 
then is the in t e rva l  between the  r e f l ec t ion  o f  t h e  shock from the  end wall and 
the appearance of  shock waves o r  expansion waves r e f l ec t ed  from the  contact  
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surface, o r  the  expansion waves feeding forward from the  diaphragm posi t ion or .,* 

the end of the  driver  chamber, whichever appears first. Again, the  gas prop- $ 
e r t i e s  a re  uniquely re la ted  t o  the  shock velocity, 

i 
Because of the  number of d i f ferent  regions involved and o f  the re la t ions  

between flow quant i t ies  required, a following l i s t  of symbols used i n  the  
analysis  w i l l  prove helpful,  par t icular ly  s ince some of these symbols 
duplicate synbols used previously with d i f ferent  meanings. 

a speed of sound, 

A cross-sectional area 

_. - .- - i B (pzl - 1) (1 - plJ 
I 
i Cp speci f ic  heat a t  constant pressure 
i 

. I 
'1 Cu speci f ic  heat a t  constant density 
i 
1 E expansion wave ,<:. 
I I " 

h enthalpy per  unit  mass, a lso  Planckls constant 

I in ter face  between t e s t  and dr iver  gas 

k Boltzmannconstant 

M Mach number, r a t i o  of flow speed t o  speed of sound 
i 

p pressure b5 

I R gas constant, a l so  ref lec ted  shock 

S entropy, a lso  incident shock 

t time 

T temperature 

I u veloci ty of gas r e l a t ive  t o  incident shock 

I v veloci ty of gas r e l a t ive  t o  shock tube 
I 

V veloci ty of incident shock re la t ive  t o  shock tube 

W veloci ty of gas r e l a t ive  t o  ref lec ted  shock 

2hp Y + 1  o - - 1; fo r  ideal gas, a = - 
P Y - 1  
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y ratio of specific heats, 
i 

hv 9 vibrational constant, 4;. ,% 

C 
I 

v vibrational frequsncy t 

1; 

, ? 

Superscripts f i 

* value of property for ideal gas, y = 1.4 

o stagnation condition 

i' 

o standard conditions of T and p, also conditions on high-pressure side of 
an expansion wave 

1 initial condition sinshock tube 
I(. 

'< 
2 condition following normal shock S 

3 condition following reflected shock R 

4 initial conditions in reservoir 

5 reservoir conditions following unsteady expansion wave Eb 

6 conditions following gas interface I but preceding unsteady expansion 

7 conditions following the reflected wave R after it passes through 
interface I 

8 conditions following the reflected wave RR formed by interaction of f 
shock R with interface I (RR maw be an expansion or a compression 9, + 
wave, depending on conditions in region 6) 

g conditions after reflection of expansion wave Eb from end of reservoir 

designated by a double subscript notation t 

i 
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i', I> : 10.6 SHOCK WAVES 

I 
UI I !% - Consider L A . :  normal shock region shown 

REGION 2 REGION I 
FINAL CONDITlONS INITIAL CONDITIONS 

in figure 10.4. Gas enters the shock with 
! velocity ul and leaves with velocity u2. 
I 

Figure 10.4. - Normal shock If the shock is propagating with the velocity I wave. V into a gas at rest, 
t i 
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and the velocity of the gas behind the shock wave relative to the stationary 
reference system is 

Shocks are commonly treated as discontinuities in the gas properties, 
whereas the shock, actually may encompass a finite region in which nonisen- , 

tropic rate processes occur, the total reaction zone propagating through the 
medium at supersonic velocity. This region may be a few millionths of a centi- 
meter thick or it may span many light years, as in a collision between stellar 
gas clouds. Equilibrium may be reached in a few mean free paths, as in the 
weak waves produced in normal air, or many billions of collisions may be 
required to reach equilibrium where chemical processes are involved. Regard- 
less of the processes occurring within the shock and the structure and dimen- 

The shock region is defined so that steady-state conditions are attained in 
region 2. However, the steady-state may be either a true equilibrium condi- 
tion or a quasi-equilibrium condition in which certain modes of energy in the 
gas are frozen or essentially uncoupled from the kinetic energy modes during 
the time scale of interest (which may be the order of milliseconds for the 
shock tube, but the order of years for interstellar shock-wave phenomena). 
Either way, the continuity of mass, momentum flux, and energy must be satis- 
fied across the shock region 

_ ..- :.&:I sions of the shock, the equations of 

I SHOCK 
WAcmN continuity determine the relations between 

. . . .  
I I ZONE I properties on either side of the shock region. 

Elimination of z d z  from equations (10.34) and (10.35) gives 

298 
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Combination of equations (10.33). and (10.34), and (10.37) yields 

md, from equations (10.34), (10.36), and (10.37)) 
, . .  

(Y21 - 1)(P12 + 1) ' (a1 + l)(h21 - 1) (10.39) 

where (al + 1) it the dimensionless parameter (2h p /pl). Note that the shock 
relations given by equations (10.37). (10.3) and i10.39) are valid for a11 
steady-state shocks regardless of the equation of state of the gas or of the 
processes that occur in the shock region. Equation (10.39) is the fundamental 
shock-wave relation between three variables p2,, p and hZ1. any one of 
which may be chosen as the independent variable. d e n  solutions for the 
remaining two can be obtained with the aid of the additional relation given by 
the equation of state of the gas: 

Shock waves need not be nonnal to the flow, of course. A velocity com- 
ponent tangential to the shock surfaces may exist and the shock then lies 
obliquely to flow. The tangential component is merely conserved, and a simple 
transformation to a coordinate system moving at this tangential velocity 
leaves the nonnal shock relations given above. 

10.7 IDEAL GAS SHOCK RELATIONS 

For an ideal gas, the quantity a is a constant: 

so that 

Choose pP1 as the independent variable and solve for hzl and ppl from 
equations (10.39) and (10.40a) to obtain 



Note tha t  f o r  very strong shock waves the  enthalpy r a t i o  approaches a simple 
function of  pressure 

. , 
and the  density r a t i o  approaches a constant l i m i t  

I .  I -.  8 t 
I -. - c -  j * .  i 

(10.43a) "21 - a 
P21*'l 

1 
i 

I The l i m i t  a = 6 obtains f o r  a i r  and other  diatomic gases with rotat ions fu l ly  
excited but vibrations frozen. For monatomic gases such as He, a = 4. ; 

Problem 10.1: trmsforu the independent variable t o  the shock Mach number (ratio of  shock speed to speed of 
sound) : 

and show that the shock relations reduce t o  
'k. ; 

zy# - (y - 1) 
pzl - Y + l  

Consider next the  shock reflected from a fixed wall a t  the end of the  
shock tube as shown i n  f igure 10.5, again fo r  ideal gas. Let W be the 

veloci ty of the  gas r e l a t ive  t o  the  reflected shock R. 
The re la t ions  between properties across the  reflected 
shock a re  the  same as  f o r  the  incident shock. Equa- 
t ions  (10.37), (10.38), and (10.39) are  a l l  val id with 
subscript 2 replacing 1 and subscript 3 replacing 2; 
f o r  the  ideal gas, equations (10.42) and (10.43) a r e  
s a t i s f i e d  i n  the  same way. 

The fixed-wall boundary imposes the  condition 
S t ha t  the  velocity of the  gas in  region 3 is zero 

(03 = 0),  so the  veloci ty of  the  reflected shock is 

-x jus t  the  velocity with which the gas leaves the 
reflected shock, W3. The velocity with which the gas 

Figure 10.5.- Shock enters  the  reflected shock is thus 

reflect ion from a 
fixed wall. 
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and from equation (10.38), 

(w2 - w3)' = (U1 - U212 @21 - 11 (1 - pi2) '- P2 - 1) (1 - p2j) (10.45) 
1 "2 

Including the equation of state, there are three equations specified 
that may be solved for the three unknowns P ~ ~ ,  and hj2: 

UJ2 - 1) (1 + ~ 2 3 )  = (h32 - 1) (a2 + 1) (10.46a) 

These equations are still perfectly general for imperfect gas as well as 
perfect gas. For the ideal gas, a is constant and 

In this case, equations (10.46) can be reduced to 

for which a solution is 

The remaining properties in region 3 can be calculated once pj2 is known, of 
course. 

a* 10.8 SHOCK WA'IES IN VIBRATING DIATCMIC GAS 

The simplost type of non-ideality is encountered when specific heat is 
not constant but the ideal gas law is obeyed. This occurs, for example, dt 
temperatures where diatomic molecules are set into vibration but are not dis- 
sociated. The enthalpy of the diatomic mleculc gas is given in terms of the 
characteristic vibrational temperature 0 = hv/k as 
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@32 - 110 - ~23) = B2 (10.57) f '+ 

y 

I z 
where Bp = (ul - u2)2(~l/p1) ( ~ ~ ~ / p ~ ~ )  Or (pS1 - 1) (1 .- p12). The basic shock 

dl 

equation for the reflected wave is (see eq. (10.39)) 

@3, - 1) (1 + ~ 2 ~ )  = ("2 + 1) (h32 ' 1) (10.58) 1 , I -' 

/ . 
R' 

where (a2 + 1) = (al + 1) (h21~21/p21). The enthalpy ratio is a function of 
the temperature ratio a 

- 

h31 - (10.59) 
h32 - ji;; 

4 
where hgl is give. by equation (10.55) with subscript 3 replacing 2. The i 

ideal gas law 

- T32 (10.60) a 
p23 ' i;;; 

' *  
provides the additional relation needed to solve the set of simultaneous equa- 
tions (10.57) through (10.60). The first, second, and fourth equations of 
this set can be put into the form 

I 

(a2 + l)(h32 - 1) + B2 i. 
- (10.61) 

'32 - T32 (a2 + 1) (ha2 - 1) ; B2 ! a 
1 

! 

Several different iteration procedures are possible. One procedure is to 
choose Tj.., calculate P~~ from equation (10.61), and determine whether 
equation (10.57) is satisfied. If not, repeat the choice of T32 until equa- 
tion (10.57) is satisfied. Some results for shock waves in air with the 
initial temperature TI = 293O K are given in figure 10.6. 

+ 1.3 
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(a) Incident shock properties. (b) Reflected shock properties. 

Figure 10.6.- Shock relations in air with vibrational effects included 
(T = 293' K, dissociation and ionization reactions frolen). 
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10.9 SHOCK WAVES IN DISSOCIATING AND IONIZING GASES 

Where the gas dissociates or ionizes, the ideal gas equation of state is 
no longer obeyed and the entire solution must be found by iteration. This is 
readily accomplished with diaital computers, but a semigraphical procedure is 
outlined to better illustrate the relationships involved. The real gas 
effects are conveniently accounted for with a plot of (Cp/R)o(p/ph) or 
(p/po)/ (p/po) (h/ho) , as a function of h/ho. Subscript o refers to a stand- 
ard state, here taken as 1 atm of pressure and 273" K. The normalizing param- 
eter (Cp/R)o is the ratio of specific heat to the gas constant evaluated at 
the standard condition: 

The quantity (Cp/R)o(plph) = 1 for the ideal gas and falls below unity as the 
gas molecules begin to vibrate, dissociate, and ionize. 

The advantage gained from plotting a normalized parameter such as 
(Cp/R),(p/ph) rather than the state variables directly is that a wide range of - 
conditions can be put on a single plot which can be read with nearly uniform 
accuracy over the entire range of variables. Also, it is relatively easy to 
interpolate with good accuracy. These advantages are retained when a digital 
machine is used to interpolate between stored tabulations. For example, fig- 

p, = I atrn 
ure 10.7 is a set of curves 

po = I arng 
plotted from Hilsenrath and 
Beckett 's data for air (ref. 9). 

As usual, a variety of 
iteration schemes leading to a 4 
solution is possible. One I 

:i 
method is as follows: >z 

(1) Specify the initial e 
h 

conditions pl, p l  , and hl and 
.2 - the enthalpy ratio h21; 1 :  

calculate 122. 8 f 
il I I I I j: I 

o 100 200 300 (2)  Choose the density 3 i r 
DIMENSIONLESS ENTHALPY h/ho ?y f 

ratio p21  an2 calculate p2. i J ,S 
't, 

4 (3) From the graph in fig- Figure 10.7.- Normalized equation of state 
d parameter plph for equilibrium air ure 10.7, find (Cp/R)o(p/ph)2 3 

as a function of normalized enthalpy. for the given he and p2, then I , , calculate p2 and p21. 

(4) Determine whether the basic shock relation equation (10.39) is 
satisfied. 



(5) If not, start at step 2 with a new choice of ppl and repeat until 
the equality, step 4, is satisfied. 

The density ratio p2, is a relatively slowly varying quantity so one 
can easily choose a value close to solution. The iterations generally con- 
verge to a solution better than 1 percent in three or four tries. If the 
results are plotted as a function of shock-wave Mach number, the results are 
not very sensitive t o  small differences in initial conditions. 

The quantity .B2 used in equation (10.57) is needed for the reflected- 
shock calculations and is given by 

. L .  

Eliminate p23 from equations (10.57) and (10.58) to obtain 1 .  ,I 
I 
i '@32 - 1) = B2 + (a2 + 1) (h3? - 1) (10.64) 

I - The density ratio is then 

One iterative scheme for calculating reflected-shock properties is 

(1) Choose the ratio h32. 

(2) C~lculate p32 from equation (10.64) and pZ3 from equation (10.65). 

g; (3) Calculate p3, h3, and p3. 

(4) From the graph in figure 10.7, select the value of (Cp/R)o@/hp)3 
that corresponds to the values p3 and h3 found in step 3. 

(5) Determine whether (Cp/R)o [p/hp) = (3. 5p3)/ (0 3h3) . 
(6) If not, start at step 1 with a new choice of h32 and repeat until 

the equality in step 5 is satisfied. 

By definition, W3 is the velocity with which the gas recedes from the 
reflected shock in region 3; it is also the velocity of the reflected shock 
due to the fixed boundary condition at the wall. From mass continuity, 

CJ2dvd + w3) = ~ 3 ~ 3  (10.66) 

. . while from equation (10.34) and the definition of v 2 ,  

12721 = Iu11(1 - ~ 1 2 )  (10.67) 

Thus the ratio of the reflected-shock speed to the incident shock speed is 



SHOCK WAVE MACH NUMBER 

(a) Pressure rst i o  . 
I 

SHOCK WAVE MACH NUMBER 

(b) Density r a t i o .  

0 2 4 6 8 10 12 14 16 
SHOCK WAVE MACH NUMBER 

(c) Temperature r a t i o .  

Figure 10.8.- Ratios, normal shock propert ies  
i n  a i r  t o  i dea l  gas values.  

The r e f l ec t ed  shock meets 
t h e  in t e r f ace  a t  a dis tance 
p 3L from the  end of t h e  
shock tube, where L i s  the  
length of  t he  tube. The time 
in t e rva l  between the  r e f l ec -  
t i o n  of t h e  shock and the  
in te rac t ion  with the  in t e r f ace  
i s  thus 

This i s  approximately t h e  
usual t e s t  time ava i lab le  i n  
the  shock tube; a t  longer 
times a compression o r  expan- 
s ion wave produced by the  
shock-interface in te rac t ion  
feeds i n t o  the  t e s t  gas. In  
pr inc ip le ,  some addi t ional  
t e s t  time is  ava i lab le  before 
the  re f lec ted  wave reaches the  
end wall ,  but i n  p rac t i ce  some 
mixing always occurs a t  t he  
in t e r f ace  and the  re f lec ted  
perturbat ion feeds i n t o  the 
t e s t  gas somewhat sooner than 
the  above. The r e s u l t  of 
these two counteracting 
e f f ec t s  i s  t h a t  equation (10.69) 
i s  found t o  give a reasonable 
estimate f o r  the  t e s t  time 
except f o r  the  following cases: 
(a) a " ta i lored  interface" 
mode of operatioi , t o  be 
described l a t e r ,  can be 
achieved i n  which the  r e f l ec -  
t i ons  from the  in t e r f ace  a r e  
minimized and the  t e s t  i n t e r -  
val i s  determined by the  
a r r i v a l  of the expansion wave 
E, o r  Ec ( f i g .  10.3(a)) ;  and 
(bj a t  very high shock speeds 
the mixing region can become 
so broad t h a t  it consumes much 
of the  t e s t  region. 
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Results of some ca lcu la t ions  f o r  t he  incident  shock moving i n t o  a i r  a t  an 
i n i t i a l  temperature T1 = 293' K ar.3 given i n  f igure  10.8. The quan t i t i e s  
p lo t t ed  a r e  normalized by t h e  idea l  gas value fo r  y = 1 . 4 .  In t h i s  way, t h e  
values remain close t o  uni ty  and one can in t e rpo la t e  between the  constant 
pressure curves with r e a s o n ~ b l e  accuracy. The in te rpola t ion  is almost l i n e a r  
with t h e  logarithm of  pressure.  Note t h a t  t he  pressure across the  normal 
shock is af fec ted  very l i t t l e  by the  r e a l  gas e f f ec t s ,  and the  increase i n  
dens i ty  caused by d issoc ia t ion  and ionizat ion i s  approximately baianced by the  
decrease i n  temperature. The decrease i n  temperature may be considered a 

II r e s u l t  of t he  la rge  thermal s ink provided by the  d issoc ia t ion  and ionizat ion 
react ions.  P lo t ted  a s  a Function of  shock-wave Mach number, t he  r e s u l t s  a r e  
approximately cor rec t  f c r  o ther  i n i t i a l  tepperr+.ures near 300" K .  P rope t t ies  

.. of  t he  a i r  following the  r e f l ec t ed  shock a r e  given i n  f igure  17.9. The 
H re f lec ted  shock speed given i n  f igure  10.9(d) is somewhat lows. thaa ubserved 

i n  ac tua l  prac t ice .  The boundary-layer e f f ec t s  tend t o  increase the  observed 
re f lec ted  :bock speed, both because the  flow is  squeezed i n t o  a soit~ewhat 
smaller zhannel and because t h e  shock wave b i furca tes  i n  t h e  hot boundary- 
layer  region so t h a t  sensors i n  t he  shock-tube wall a r e  ac t iva ted  before t h e  
t r u e  shock a r r ives  i n  t he  main channel. I f  t he  boundary-layer thickness is  an 
appreciable f rac t ion  of t he  tube diameter, correct ions must be applied t o  
these calculated re f lec ted  shock propert ies .  

; 
Before considering the  in te rac t ion  of t he  r e f l ec t ed  shock and the dr iving 

gas in te r face ,  consider t he  r e l a t i ons  between the  reservoi r  conditions,  
region 4, and the  shock propert ies .  These r e l a t i ons  determine t h e  propert ies  
i n  region 6 and thus he magnitude of t he  shock in te rac t ion  with the  in te r face .  
Only an ideal  d r ive r  gas is t r ea t ed  because, i n  many cases of p rac t i ca l  i ~ t e y -  
e s t ,  t he  dr iving gas is  predominantly helium, which i s  la rge ly  i n e r t  u n t i l  
ionizat ion temperatures a r e  reached. Even where t h e  dr iving gas is nonideal, 
t h e  general behavior of the  nonideal gas can be approximated by use of an 
e f f e c t i v e r a t i o o f  s p e c i f i c h e a t s .  

*. 
In generals the reservoi r  may have a cross-sect ional  area d i f f e r en t  from 

t h a t  of t he  shock tube. Area r a t i o s  of  u n i t y o r i n f i n i t y  a r e  merely spec ia l  
8; cases of  t he  general r e l a t i ons  t h a t  follow. When the  reservoi r  gas i s  suddenly 

released i n t o  the lower pressure shock-tube gas, an expansion wave E, propa- 
gates  down the tube following the shock S and t h e  in t e r f ace  I ( f ig .  10.3). 
This expansion i s  a nonsteady but i sen t ropic  process t h a t  acce lera tes  the  

: reservoi r  gas t o  i t s  ve loc i ty  a t  the  in te r face ;  t he  expansion wave ac tua l ly  
moves upstream against  the  flow. A t  the  area t r a n s i t i o n  between reservoi r  and 
shock tube, another i sen t ropic  expansion E8 i s  es tabl ished which rapidly 

, becomes steady s t a t e .  I f  t he  t r ans i t i on  sect ion is  sho r t ,  f o r  p rac t i ca l  pur- 
poses, we may consider t h i s  expansion t o  reach i ts  steady s t a t e  instantane- 
ously. The downstream s i d e  of t h i s  expansion terminates a t  the  sonic l i n e  
where the  local  Mach number i s  uni ty.  Final ly ,  another unsteady, i sen t ropic  
expansion Eb propagates i n t o  the reservoi r  and acce lera tes  t he  gas toward 
the  entrance t o  t he  shock tube. Before proceding with the  ana lys is ,  it may be 
helpful  t o  r e c a l l  the  difference between s teady-state  and nonsteady expansions. 

#: Across the  s teady-state  expansion, t he  energy per  un i t  mass of gas i s  
R conserved: 
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! where h, is the conserved stagnation enthalpy, The Mach number of the flow 

is given by 1 

i S 
2C To @="=2(T- YHT YR l)=-+i($- (10.71) 1 I "I j 

I 4 -  

Since the flow is isentropic, 1 1 . > 
j - Po (Y-~]/Y + .  5 = (T) (10.72) ,!,- I 

T I zr 

where 

1 -Y/(Y-11 * $  
2- = + Y- M2) (10.73) 

2 Po 
b 

i 

Equation (10.73) is the steady-state expansion relation between p and M, + 
where po is the pressure on the high-pressure side of the expansion, that is, 
the stagnation pressure in a frame of reference at rest with respect to the .+a 

gas. An alternative form of equation (10.73) is .c 

Y/(Y-~) 
.f 

Y - 1  2- = (1 - - ~ ~ 2 )  
- 

(10.73a) 2 Po 

where Mo = u/ao = U/(~RT~)~'~, that is, a Mach number referred to the stagna- i. 
tion speed of sound rather than the local sound speed. ii 

* 
For nonsteady expansions, equation (10.70) does not apply to a fixed 

position relative to the gas. To obtain the velocity produced by a nonsteady 
expansion, the characteristic equation is integrated along a constant 
isentrope (see ref. 1): 

, ,. u-uo=-j'z$ (10.74) 
' a  

t 

The acoustic impedance for ideal gases is , i ,$ 

(~+1)/2~ $ i 
pa = poao (e) (10.75) i f i; 

v$> 
Thus 

5 / I P / P ~  y- (Y")/~Y dy i u - u 0 = -  (10.76) 
Poa, i 

3 
i 

Integrate and substitute a. = ( Y P ~ / P ~ )  lI2 to obtain 3 
i , . 

(Y-I)/~Y i e!' 

u - u o = * ~ -  Y - 1  ] (10.77) J i :;. 

1 
$ In terms of a Mach number M defined by the change in velocity u - uo, 3 .  2 
3 I 
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, j where Mo = (u - uo)/ao. 

'r, With the difference between .>quations (10.73) and (10.80) clearly in mind, 

f proceed to calculate the Mach number Ms from 
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,* ~" . .. . ,- . \ 4" . , ,  . .  ' 

e . ,  5 
3 .  -.: .,, , 

v 9 . t ,  . , , ( I .  , 
* ? ,  ,; , *G. a-c .. . A. . . 

\ i 
. . " .  , . - r e  - . bd -- - . -- -- nr, w r r ( .  

; + 
:t'* , , - L t;P , . , . <  

Since the solution for M5 requires iteration, a more straightforward proce- 
dure specifies M5 and calculates the area ratio that corresponds to 
this Mach number. The pressure ratio for the rarefaction wave that acceler- 
ates the gas from rest in state 4 to the velocity M5 is given by the 
nonsteady expansion 

+ .. , r ', 

Further acceleration to the sonic velocity requires a pressure ratio given by 
the steady relation 

b . ... 

1 
where p* is the pressure at the sonic line and p50 is a conserved i 
stagnation pressure for region 5 defined by 
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a (10.78) 

and since for ideal gas 

(10.79) a i 
the unsteady expansion relation between p and M is 

-. . _*.I - 
... - - 

2 (10.80) 
Po 

An alternative form of equation (10.80) is 

I 2Y/(Y-l) Y - 1  
I 

(10.80a) 
.. I Po 



Thus 

Finally, to accelerate the gas further to M6, a second nonsteady rarefaction 
(see eq. (10.80)) is required so that 

The total pressure drop from region 4 to 6 is obtained by multiplying 
equations (10.82), (10.85), and (10.86) : 

Since the entire set of expansions, both steady and unsteady, is isentropic, 
the temperature ratio is 

All other properties in region 6 are determined accordingly. There cannot be 
a discontinuity in pressure or velocity across the interface; therefore, 
p = p2 and us = u2.  Thus all conditions in regions 2 and 1 are determined by 
tie choice of M6. 

c When Ms = 0, the area ratio A s l  becomes infinite and the expansion 
wave Eb disappears. Actually, the pressure drop ( P L , ~  - 1) becomes very 
small for area ratios of the order 10, and a chamber with area ratio A 4 1  
greater than 10 functions essentially as an infinite chamber if it also has 
sufficient volume that the weak but finite expansion waves, produced in the 
chamber by the exhaust of reservoir gas, do not decrease the pressure appreci- 
ably. The required reservoir volume is thus a function of shock-tube length. 
The strength of the expansion Ec produced by reflection of Eb from the end 
of the reservoir is calculated as follows: After the expansion reflects from 
the wall, it decelerates the gas to zero velocity again in region 9, that is, 
the change in velocity is -V5. The speed of sound on the high-pressure side 
of the wave is as. Then equation (10.80a) beconies, with notation 
appropriately changed, 



I When Ns = 1, the  area r a t i o  A41 is unity and the  steady-state expan- #.; 

I sion Es disappears; the  remaining expansions become a s ingle  nonsteady 
expansion f o r  which the  pressure drop is given by an equation of  the  form i 

(10.80) . /-,: ": I I .  

Problr 10.2: For a shock tube with area ratio AI,~ = 1 and ideal gas behavior, show that the relation 
between shock strength ptl and reservoir pressure ratio prl is given by 

aq+l 

Generally, when the  shock wave tha t  r e f l e c t s  f r o m  the  end of the  shock 
tube in terac ts  with the  in ter face  I, it is  pa r t ly  transmitted and pa r t ly  
reflected. The ref lec ted  par t  may be e i the r  an expansion o r  a compression 
wave, depending on the  r e l a t i v e  energy levels  of the  two gases. To obtain 
long t e s t ing  times, one is par t icular ly  interested i n  the  special  case where 
the reflected par t  vanishes. In figure 10.3, the  boundary conditions tha t  
correspond t o  no ref lec t ion  a t  the  in ter face  require tha t  p 3  = p7 and 
v3 = v7 = 0.  When 07 vanishes, the  shock veloci ty i s  W7 and the  veloci ty 
with which the  a i r  from region 6 enters  the  shock is 

Thus (see eq. (10.45)), 

From the  equality of pressures p7 = p3 and p6 = p 2 ,  there  r e su l t s  

The basic shock-wave equation, equation (10.39), across the  shock separating 
regions 6 and 7, becomes 

Equations (10.92) and (10.93) a re  two re la t ions  between three unknowns P16, 
p 6 7 ,  and h76.  The t h i r d  re la t ion  required is again given by the  equation of 
s ta te :  



Generally, equations (10.92), (10.93), and (10.94) must be solved by an 
iteration procedure as for the incident and reflected shock properties in a 
real gas. In some cases of practical interest, the gas in region 6 is at a 
relatively low temperature where the ideal gas relation holds. This is par- 
ticularly true where the driver gas is largely an inert gas such as helium. 
Then equation (10.94) can be expressed (see eq. (10.41)) as 

and the shock-wave equation (10.93) becomes 

Thus the enthalpy and density ratios are 

If the gas in region 1 is also at a temperature low enough to behave 
ideally, one can substitute (pIIp1) = 2hl/(al + 1); then 

f from which the enthalpy ratio is 

I' 

2 
'i This is the enthalpy ratio required so that no reflection occurs at interface 
p I. If hC1 is larger than given in equations (10.96) and (10.98), a shock 
r wave is reflected back toward the end of the shock tube; if it is smaller, an 

expansion wave is reflected. The strength of the transmitted wave adjusLs 
% itself so that o continuity of pressure and velocity is maintained across the 6 
R. 

interface. 



Establishing the above conditions leads t o  what is  ca l l ed  the  " ta i lored  
interface" mode of shock tube operation. The advantage of  t h i s  mode is t h a t  
it leads t o  long t e s t  i n t e rva l s ,  which can be an order  of magnitude longer 
than the estimate given by equation (10.69). The disadvantage is t h a t  t he  
experimenter has l e s s  f l e x i b i l i t y  i n  the choice of  test  conditions than is 
of ten  desired, s ince only one uniquely t a i l o r e d  test condition can be obtained 
f o r  a given i n i t i a l  t e s t  gas and d r ive r  gas combination, whereas an e n t i r e  
range of t e s t  gas pressures and temperatures can be e a s i l y  obtained ju s t  by 
changing the  dr iver  gas pressure o r  enthnlpy, i f  r e f l ec t ed  waves from the  
in t e r f ace  a r e  permitted. In prac t ice ,  t he re  a r e  always some small d is turb-  
ances which feed in to  the t e s t  gas even a t  t a i l o r e d  in te r face  conditions,  due 
t o  t h e  f a c t  t h a t  t he  in t e r f ace  is a mixed region r a t h e r  than a t r u e  discont i-  
nu i ty  a s  assumed i n  the analysis .  However, these disturbances can of ten  be  
made qui te  sma;l so tha t  a r e l a t i ve ly  steady t e s t  sample i s  obtained u n t i l  t h e  
expansion wave E, or  5, [ f ig .  10.3(a)) feeds i n t o  the  t e s t  gas. Whichever 
expansion a r r ives  f i r s t  depends on the  shock tube and reservoi r  lengths,  of 
course. The t e s t  in te rva l  can be fu r the r  increased by designing t h e  r a t i o  of 
t he  reservoi r  area t o  t h e  shock tube area so  t h a t  t h e  returning compression 
wave ju s t  cancels the expansion wave E, and is  e s s e n t i a l l y  at tenuated t o  
vanishing s t rength as  it reaches the  entrance t o  t h e  reservoi r .  A perforated 
t h r o t t l e  p l a t e  can be used a t  the entrallce t o  achieyve t h i s  condition, while a t  
the  same time the  reservoi r  functions e s sen t i a l l y  a s  an i n f i n i t e  gas supply 
where the  expansion E ,  vanishes. This i s  known a s  t he  "one-cycle shock com- 
pression" mode of operating the shock tube. Perhaps the  l a rges t ,  long-test-  
in te rva l  shock tube of t h i s  type was the  1-Foot Hypervelocity Shock Tunnel a t  
the hnes Research Center developed by Cunningham and Katlus ( re f .  l o ) ,  which 
had a usable t e s t  in te rva l  up t o  180 mi l i i sec .  A spark ign i ted  combustible 
mixture of Hz, O2 and tle w2s used t o  produce d r ive r  gas a t  2080' K and 340 atm; 
the f a c i l i t y  was extensively ca l ibra ted  f o r  t a i l o r e d  operation i n  a i r  (ref.11) 
a t  an i n i t i a l  pressure of 0.34 atm, leading t o  a t e s t  sample of a i r  a t  5650' K 
and 275 atm. T h i s  a i r  san!ple was clscd a s  t he  reservoi r  dr iving a 1-foot diam- 
e t e r  supersonic nozzle a t  a Mach number 14; t he  long t e s t  times were needed i n  
t h i s  case so tha t  nioclels could be tes ted  i n  the expanded stream f o r  heating 
r a t e s ,  drag coef f ic ien ts ,  e t c .  

The long t e s t  i n t e rva l s  obtained with the  t a i l o i z J  i n t e r f ace  shock tube 
a r e  .lot r ea l ly  nee3t.u fo r  other  types of experiments such a s  measurements of  
react ion r a t e  processes, radiat ion proper t ies  of high temperature gases,  e t c .  
Modern instrumentation tias such good high frequency response t h a t  such measure- 
ments can of ten h e  ~radc i n  a time the order  of 10 I!SCL 01 l e s s .  Thus most 
shock tubes a r e  operated over a wide -ankc of t e s t  conditions which can be 
o b t a i n c ~  when tai la i*ing i s  ignored. Most tubes a r e  made l e s s  than 100 diam- 
e t e r s  i.. length ir! ortic:r to l imit boundary layer  e f f e c t s  which severely at tenu-  
a t e  the shock s~)cccl a t  tfistances f a r  along the  tube and force the  experimenter 
t o  cope with a non-constant. shock veloci ty  there.  

Other prac t ica l  1 inli tations appear a s  one attempts t o  producs the  very 
highest speed shock wavcs ant1 11:ghest temperature t e s t  gas samples. A t  pres- 
en t ,  the strongest shocks  w i t h  adequate t e s t  i n t e rva l s  a r e  produced by heating 
hydrogen d r ive r  gas w i t h  a high-voltage, high-curtent e l e c t r i c  discharge. Dis- 
charges of '10 k\, w i t h  pvak currents  of 5x105 amperes have been used, producing 
shock veloci t i es  111) to  nboct 50 knl/sec i n  hydrogen t e s t  gas i n i t i a l l y  a t  room 
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temperature and one torr pressure (refs. 12 and 13), with usable test 
intervals the order of 5 psec. Still higher velocities are possible, but only 
at much reduced pressure and with vanishir,gly small tcst intervals. For 
example, another technique of producing strong shocks with velocities greater 
than 60 km/sec makes use of shaped charge explosives (refs. 14 and IS), but 
again produces very short test intervals. tlowever. this sittiation is changing 
rapidly with methods of tailoring the arc ciiscllarge to t1,- Lime changes in 
driver gas properties and by mass addition to the driver gas during the dis- 
charge process (ref. 13,. Thus still higher shock speeds i n  test gases with 
usable pressure and reasonable test intervals are anticipated in the future. 
The conditions necessary to test the full range of space probe entry into 
heavy planet atomspheres (Jupiter, Saturn, Uranus) appear to be achievable. 

10.10 CONCLIJDING REMARKS 

Equilibrium thermodynamic properties of real gases in shock-tube flow can 
be calculated with good accuracy, and these solt~tions :Ire often used with mea- 
sured shock velocities to establish thc? propcrt i cs of h i  ~11.- tcnq~crnture gases 
produced in shock tubes for various test purposes. (;cncrall y, thc shock wave 
reflected from the end wall of a tube travcls :~t fnstcr speed tha,: calculated 
for one-dimensional flow because the boundary Inycr I)i11 I t  up hy the incoming 
flow effectively reduces the channel area, but if t h c  gas ~wopcrtics :ire 
related to the measured shock velocities they can l ~ c  :~ssc~-~ctl tliritc accurately. 

Shock tubes are, of course, widely used to mcasurc r;~rlrc{trilibriurn rate 
processes in which the experimenter measures a ratc of approach toward equilib- 
r i m  and deduces a time constant or rate coefficicrlt for tho prl;ccss or pro- 
cesses taking place in the shock-excited gas.  TG pursue thcsc problems 
further, .., must leave the comfortable realm of equilibririm rvhcre the rela- 
tions between variables are independent of t h e  processes involvcd and tackle 
the far more difficult problem of modeling rntc proccsscs that occur under 
nonequilibrium conditions. These produce, for cxarnplc, thc t rarisfer of mass, 
momentum, energy, or charge through gases when no~~cac!ui 1 i h.1.i urn grndi cnts in 
species density, velocity, and temperature occur. If tho cllangcs in flow 
properties are rapid compared with chemical relaxat ion ti mcs, then finite rate 
chemistry must be included for the relaxation of rotat ionnl cnc. ,..:y, vibrn- 
tional energy, electronic energy, and chemical spccic~s co~l~crltr:;tiolr. I.inally, 
the rate of radiant energy transfer through g;iscs Jrpcnds on thc riidiation 
absorbtion and emissi~n rates of thc excited atorrlic :tr~tl 111o 1 (lct~l:~ r spcc i cs prcs- 
ent. This takes us beyond the bounds of this lloo!, . brit t l ~ r l  m:~tcri:~l iqcluded 
here is a prerequisite to an analysis of thcsc f';~sr-irlat ills st~lljccts. 
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199, 228 

average der4ved from wave func- 
tions 62, 64, 82 

conjugate to coordinates 22, 113, 
153, 181 

coordinate space or phase 
space 11, 20, 60, 145 

generalized 22 
Morse function 

oscillator wave functions 137 
potential 136, 143 

Multiplet splitting 215 
Nodal line, Eulerian coordinates 112 
Nonequilibrium 

process path 4, 44 
state 4 

Nonequivalent electron configura- 
tions 219 

Normal coordinates for vibration 151 
bending modes 167, 178 
linear symmetric triatomic 

molecules 159 
nonlinear symmetric triatomic 

molecules 161, 165 
polyatomic molecule 191 



~ormalization of wave functions 133 
bending vibration 167, 179 
harmonic oscillator 130 
molecular beam 65 
Morse oscillator 138 
one electron 59, 200 
rotational 96 
spin 104 
two electron exchange 208 

Nuclear spin 103 
entropy 109 
ground state particles 111 
ortho and para states 10; 

Oblate symmetric tops 118 
Observables in quantum mechanics 80 
Open system of gas mixtures 46 
Operators 

Cartesian coordinates 63 
cylindrical coordinates 83 
Hamiltonian 172 
Hermitian 80, 182, 194 
Laplacian 63, 83, 194, 203, 261 
momentum space 63 
quantum mechanics 80 
spherical coordinates 82 

Ortholpara conversion 109 
Ortho spin state 107 
Orthogonality of wave functions 80, 

104, 106, 133, 140, 172, 201, 208 
Overlnp integral 208 
Para spin state 107 
Particle-wave duality 61 
Partition function 15 

concentration standardized 52, 268 
corrections to 233, 248 
degenerate vibrations 168 
diatomic molecule coupled vibration- 

rotation 239 
electronic 230, 256 
free particle 69, 70 
gas phase 19 
harmonic oscillator 127, 130 
large amplitude bending vibra- 

tions 188 
phase integral related to 21 
pressure standardized 52, 268 
rotational 94, 98, 114, 239 
single particle function related to 

state sum 19, 23 
solid phase 16 
truncation of 99, 131, 232, 256 

Pauli principle 101, 107, 202, 
203, 206, 216 I 

Perturbation 
matrix elements 133, 143, 173, 

183 
I 
! 

solution to Schroedlnger ' s equa- i 
! 

tion 133, 182 I 

Phase space or momentum-coordinate 
space 11, 20, 60, 107, 114, 145 

Planck's quantization principle 145 
Poisson's equation 260 

- I 

i 

Polarizability 243 
Polarization-polarization interac- 

tion 245, 254 
Polyatomic molecule 

partition function 114 
rotators 111, 115 
vibrations 151, 188, 190 
XY2 115, 12U, 156, 161, 189 
XY3 115, 119, 190 
X2Y2 191 
XYq 115, 194 
Yj 180 

Potential 
Coulomb 198, 209, 215, 243, 257 
cubic anharmonic 136, 143 
diatomic molecules 126, 136, 143 
Debye 260 
Dunham 132 
effective, combined rotation 

, vibration 238 
energy 22 
hard-sphere-attractive 247 
harmonic oscillator 126, 237 3 4 
Lennard Jones 136, 141 
Morse function 136, 237 
polyatomic molecules 152, 156, 

162, 165 
Rydberg-Klein-Rees 141 
square well 188 
stepped approximation in quantum 

mechanics 85 
,f 

'r' 

Practical or virtual entropy 110 
Prandtl-Meyer expansion angle 294 
Precession of coupled momenta 98, 

228 
Pressure 3, 6, 30 f 

Bose-Einstein gas 74 
classical particle gas 70 
critical 254 

i 

Fermi-Dirac gas 77 
gas with dispersion forces 250 
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partial 49, 269 
quantized particle gas 72 

Principal axes, moment of inertia 
ellipsoid 112 

Probability 
distinguishabls particles 12 
indistinguishable particles 12 
neighbor particle perturbation 257 
wave function relation to 12, 59 

Prolate synnaetric top 117 
Quantum 

cell size in phase space 21, 60 
probability 12 
processes, related to classical 

processes 61 
statistics of bosons and 

fermions 35 
wave functions 12, 58, 64, 95, 103, 

130, 201 
Quantum numbers 

electronic partition function cut 
off 257, 264 

electronic states 201 
free particles 68 
rotation 96, 116 
spin 104, 107 
vibration 129, 138, 169, 176 

Rate coefficients 49 
Ratio of specific heats 72, 278, 290, 

293, 299, 304, 309 
Reaction rates, forward and reverse 49 
Reduced mass 

collision with electrons 263 
electron and nucleus 198 
three or more particles 92 
two particle 91 

Resonance, Fermi 170 
Reversible process 3, 4 
Riemann 

integrals 294 
invariants 292 

Rotational 
corrections for large amplitude 

bending 183 
coupling with vibrations 235 
partition functions 94, 98, 114, 

239 
wave functions 95 

r Rotational constants 
diatomic molecules 100 
polyatomic molecules 115 

Rydberg energy unit 199, 212 

Rydberg-Klein-Reee potential 143 
Ruseell-Saunders coupling 215 
Schroedinger equation 58, 133, 172 

bending vibrations 183 
coupled oscillators 245 
cylindrical coordinates 84, 176 
Debye potential 260 
diatomic molecule 91, 125 
free particle 59, 68, 91 
harmonic oscillator 128, 154, 172 
Maxwell equation, relation to 58 
Morse oscillator 137 
one-electron atom 199 
perturbation solutions of 133 
rigid rotator 95 
spherical coordinates 85 

Second law of thermodynamics 3 
Secular equation for vibrational 

frequencies 155, 157 
Separable wave function solutions 91, 

95, 126, 153, 204 
Separation of center of mass and 

internal mode coordinates 90 
Shock tube flow 294, 314 

test interval 306, 314 
Shock waves 298 

dissociating and ionizing gas 304 
ideal gas 299 
interface interactions 312 
real gas solutions by itera- 

tion 304 
reflections 300, 308 
thickness 298 
vibrating diatomic gas 301 

Solid phase statistics 14 
Somerfeld expansion for degenerate 

Fermi-Dirac gas 76 
Specific heats 

chemically reacting gas 272, 277 
constant pressure 2, 7, 271, 291 
constant volume 2, 7, 28, 271, 291 
Fermi-Dirac gas 78 
oscillators 131, 148 
ratio of 72, 278, 291 
rigid rotators 123 

Spectroscopic constants 
electronic 221, 227 
rotational 99, 115, 185 
vibrational 136, 189, 190 

Spectroscopic notation 
electronic states of atoms 202, 

216, 220 



electronic states of molecules 225 
Hund's coupling 228 
rotational states 99, 116, 236 
vibration-rotation coupling 238, 

239 
vibrational statee 132, 179 

Spectroscopy effects of nuclear 
spin 109 

Speed of sound in gases 288, 290, 293 
Spherical harmonic functions 95, 200 
Spherical symmetric top 116 
Spin 

degeneracy 108 
nuclear 103, 107, 109, 111, 228 
,quantum numbers 104 
ortho and para states of homonuclear 

diatomic molecules 107 
steady state wave functions 104, 

106, 206 
syannetric and antisymmetric 

states 104, 206 
Spontaneous process 43 
Stagnation enthalpy 294, 309 
Standard state 8, 52, 251, 270 
Stark effect 242, 263 
State sum 17 
Statistical mechanics 8 

classical (Maxwell Boltzmann) 20 
gas phase 17 
quantum (Bose-Einstein and Fermi- 

Dirac) 35 
solid phase 14 

Steady expansion waves 295, 309 
Stirling's approximation for facto- 

rials 14 
Stoichiometric coefficients 49, 267 
Symmetry 

r~ordinates 162, 190 
molecular electronic states 226 
molecular rotations 100, 114 
polyatomic molecule vibrations 190 
quantum effects of 13, 101, 104, 

107, 110, 206 
two electron atoms 206 

Tailored interface shock tube condi- 
tions 314 

Temperature 3, 6 
absolute 24 
critical 75, 254 
pseudo 25 

Thermodynamic functions 2 

derived' from partition func- 
tione 15, 27, 70, 110, 122, 
130, 147, 231, 250, 271 

dissociating gas 275 
inert gas 70 
intensive and extensive 48 
oscillators 130, 147 
rotators 122 

Thermodynamic probability 
bosons 35, 39 
distinguishable particles (solid 

phase) 14, 37 
fermions 35, 38 
fixed distribution function 9 
fluctuating distribution func- 

tion 10 
indistinguishable particles (gas 

phase) 18, 38 
Thermodynamic relations 2 

closed systems 3 
open system gas mixtures 46 

Time irreversibility of spontaneous 
processes 9 

Time-distance shock tube diagram 295, 
300 

Tops, spherical, oblate, and 
prolate 116 

Trace species in chemically reacting 
mixtures 281, 284 

Trajectories of quantized oscillator 
in phase space 146 

Triatomic molecule 
bond angles 115, 189 
linear symmetric 156 
nonlinear symmetric 161 
rotational constants 115 
vibrational frequencies 189 

Truncation of partition functions 
electronic 232, 256 
rotational 99 
vibrational 131 

Uncertainty principle 58, 60, 84, 
94, 101, 129, 198, 263 

Unsteady expansion wave 295, 309 
Van der Waals gas 253 
Variational method of calculating 

electronic energy 205 
Vibrational frequencies 

diatomic molecule 128 
linear s ~ e t r i c  triatomic 

molecule i56, 180, 189 



nonlinear symmetric triatomic 
molecule 164, 166, 179, 189 

polyatomic molecule 190 
Vibrations 

bending 156, 160, 167, 175, 180 
degenerate 167 
effect of shock waves 301 
harmonic oscillator 127 
polyatonic 155, 188 

Virial 
coefficients 253 
equation of state 251 

Virtual or practical entropy 110 
Volume 2, 6 

critical 254 
Wave 

cylindrical 83, 85 
number 59, 85 
number amplitude function 60, 63 

packet 60 
plane 59, 68 
spherical 82, 84 

Wave function 12, 58 
atomic 201, 203 
bound particle 65 
free particle 64, 67 
harmonic oscillator 130 
Morse oscillator 137 
rigid rotator 95 
symmetric and antisymmetric 103 

Work 3 
Zero point energy 27, 52, 78, 228, 

269. 276 
~ltterbewegung of Dirac electron 104 
Zustandssumme or state sum 16 
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